Использование мультимедийных средств при изучении основных свойств движений в курсе планиметрии основной школы
Рефераты >> Педагогика >> Использование мультимедийных средств при изучении основных свойств движений в курсе планиметрии основной школы

В параграфе 11 («Поворот и центральная симметрия») вводится один из видов движений – поворот c примерами рисунков для наглядного представления данного вида движения.

Далее рассматриваются задачи с решениями. После решения задачи 1 упоминаются «характерные точки» фигуры. В случае отрезка такими характерными точками являются его концы. Для ломанной (или многоугольника) - вершины. Далее рассматривается способ нахождения образа окружности.

Глава 5. Осевая симметрия

В параграфе 16 («Построение симметричных фигур») при изложении материала о движениях нарушено логическое изложение материала: определение движения даётся лишь описательное, и доказательство того, что рассматриваемое преобразование является движением (т. е. сохраняет расстояния), не приводится. Несколько лучше описывается параллельный перенос. Поворот и осевая симметрия вводятся лишь описательно. В частности, поворот определяется как движение плоскости, при котором только одна точка остаётся неподвижной, т. е. переходит в себя. Однако не доказывается почему такое движение существует, а только приводится наглядный рисунок. Рассмотрение данного рисунка заменяет для учащихся доказательство существования.

По аналогии рассматривается и осевая симметрия, которая определена как такое движение плоскости, при котором все точки некоторой прямой остаются неподвижными, а любая точка не принадлежащая данной прямой переходит в другую точку, лежащую по другую сторону этой прямой на равном расстоянии.

Как и в предыдущих параграфах, говорится о том, что для построения образа фигуры надо выделить в ней характерные точки и построить их образы.

В параграфе 17 («Ось симметрии двух точек») материал дается традиционный. Материал о четырёхугольниках специального вида (прямоугольник, ромб, квадрат) рассредоточен по разным параграфам учебного пособия. В данном параграфе рассматривается ромб.

В 18 параграфе («Свойства равнобедренного треугольника») упор сделан на симметричность равнобедренного треугольника; это систематизирует факты и упрощает доказательства. Так же в этой главе присутствует параграф 19, в котором вводится понятие расстояния от точки до прямой.

Композиция геометрических преобразований

Содержание этого параграфа нетрадиционно: прежде этот материал в школе не рассматривался.

Подчеркивается, что композиция движений является некоммутативной операцией. Это поясняется примером, однако некоторых случаях композиция движений обладает свойством коммутативности.

Далее в параграфе рассматривается три задачи. Они дают образцы нахождения композиции различных движений: рассматриваются два возможных случая нахождения композиции осевых симметрии, и композиция поворота и параллельного переноса. В рассмотренных задачах композиция симметрии, поворотов и переносов снова была движением одного из этих видов. Однако приводится пример композиции которая не является ни поворотом, ни параллельным переносом, ни осевой симметрией (эта композиция называется скользящей симметрией и является движением, меняющим ориентацию).

Далее вводится теорема о меняющем ориентацию движении.

В этом параграфе рассматривается лишь случай композиции движений. Можно также рассматривать композиции и других геометрических преобразований. В следующем параграфе рассматривается композиция гомотетии и движения.

В параграфе 37 («Основное свойство подобия. Признак подобия треугольников.») содержание теоретического текста параграфа не сложно. Цель данного параграфа познакомить ученика с основным свойством подобия. И это свойство подобия в этом параграфе используют для доказательства одного из признаков подобия треугольников.

Следующий параграф («Применение подобия к решению задач.») является продолжением предыдущего. В этом параграфе рассматриваются две основные задачи на доказательство, при решении которых используется подобие.

В заключительном параграфе данной главы («Отношение периметров, отношение площадей подобных треугольников».)

Вводятся 2 теоремы об отношениях периметров (площадей) подобных треугольников. Теоремы эти традиционны, их доказательства несложны.

2.2 Учебник И.Ф. Шарыгина «Геометрия 7 - 9»

Знакомство с понятием «движение на плоскости» и свойствами движения происходит в конце 9 класса, начиная с параграфа 12.1. Весь материал направлем прежде всего на учеников в развитым наглядно-образным компонентом.

12.1. Движение плоскости

В данном параграфе вводится понятие движения. Движением называется такое преобразование плоскости, которое не меняет расстояние между парами точек, то есть если точки А и В в результате движения переходят в точки A` и B`, то AB = A`B`. Далее идет изложение и доказательство основного свойства движения «Результатом двух последовательных движений плоскости является движение плоскости». После чего даются с доказательством две основные теоремы о движении плоскости:

1. Любое движение плоскости полностью задается движением трех точек плоскости, не лежащих на одной прямой;

2. Любое движение плоскости может быть получено с помощью не более чем трех осевых симметрий.

При объяснении материала авторы пытаются изобразить само движение на одном черчеже, что ведет к тому, что рисунки (рис. 326, 328) становятся для ребят трудно читаемыми. Само изложение доказательства является сложным для слабых учеников общеобразовательной школы.

12.2 Виды движений.

В данном пункте авторы, рассматривают некоторые виды движений:

Параллельный перенос и поворот рассматриваются как результат последовательного выполнения двух осевых симметрий.

В качестве дополнительного материала, авторы рассматривают три осевые симметрии и движение задаваемое тремя осевыми симметриями: «Три последовательные осевые симметрии, оси которых не все параллельны и не проходят через одну точку, можно заменить двумя движениями: симметрией и параллельным переносом».

Далее рассматривается скользящая симметрия, как последовательное выполнение трех осевых симетрий (для изучения в физико-математических классах или могут применяться для занятиях на кружках).

2.3 Учебник А.В. Погорелова «Геометрия 7-11»

В данном учебнике дается строгое изложение школьного курса планиметрии на основе аксиоматики и рассматриваются различные виды движений.

Параграф 9. Движение.

Пункт 82. Преобразование фигур.

Перед введением определения движения, авторы вводит понятие «преобразование».

Затем дается само определение понятия движения - «преобразование данной фигуры в другую, если оно сохраняет расстояние между точками, то есть переводит любые две точки X и Y одной фигуры в точки Х'и У другой фигуры так, что XY=X'Y'«.

Далее идет свойство движения («два движения, выполненные последовательно, дают снова движение), которое доказывается в учебнике в одну сторону. Свойство обратному данному формулируется, но не доказывается.

83. Свойства движения

Изучение этой темы начинается с теоремы: точки, лежащие на одной прямой, при движении переходят в точки, лежащие на прямой, и сохраняется порядок их взаимного расположения.


Страница: