Использование мультимедийных средств при изучении основных свойств движений в курсе планиметрии основной школыРефераты >> Педагогика >> Использование мультимедийных средств при изучении основных свойств движений в курсе планиметрии основной школы
Рис.4
Симметрия относительно точки
Следующие четыре сцены посвящены теме «симметрия относительно точки». В этих сценах идет последовательное изложение материала, а основной упор сделан на алгоритме построения.
Седьмая сцена посвящена основному построению симметрии относительно точки: построение точки X1 симметрично точке X относительно точки O. Здесь ученики впервые сталкиваются с алгоритмом построения симметричных точек. Данную сцену учителю рекомендуется повторить несколько раз для более прочного усвоения в 8 классе. После показа сцены ученикам необходимо самостоятельно воспроизвести построение точки X1 симметричной точке X относительно точки O.
Рис.5
Далее (сцена семь, восемь) идет центральная по значению сцена в теме «симметрия относительно точки». Здесь дан алгоритм построения симметричной фигуры, и показано полное совпадение фигур (кадр 8:16 – 8:17). Необходимо обратить внимание учеников на то, что построение образа треугольника выполняется по трем его вершинам. После приведения примера построения с помощью пособия рекомендуется задать ученикам вопрос о других вариантах построения.
Рис.6
После идет логический переход к формулировке общего определения преобразования симметрии, на основе предыдущего построения (в учебнике данному факту не уделяется должного внимания, что приводит к некоторым затруднениям в понимании материала у отстающих учеников. Кадр 8:19).
Рис.7
Сцена 8. Данная сцена направлена на раскрытие понятия «центрально-симетричная фигура». Подведение к данному понятию совершается с помощью нескольких задач. В первой задаче (задача №2) необходимо построить треугольник симметричный данному, относительно цента его основания O. Далее происходит усложнение предыдущей задачи и вводится такой новый элемент, как совпадение точек при построении симметричных точек (в зависимости от подготовки класса этот факт можно озвучить сразу или после соответствующего ответа учеников). Это дает ученикам в дальнейшем более легко понять как стоится центрально-симетричная фигура.
Вторая части сцены является логическим следствием из первой части. Здесь на основании предыдущих построений происходит доказательство, того что полученный черырехугольник является параллелограммом. Данное доказательсво рекомендуется выполнять в классе устно, а саму часть сцены с доказательством показывать после обсуждения.
Третья часть. Здесь раскрывается понятие центрально-симетричной фигуры. Построение фигуры производится по точкам. После построении всех точек происходит их медренное соединение красными отрезками, с целью акцентирования внимания учащихся. Здесь рекомендуется проговаривать еще раз какая точка является образом соответствующей вершины.
В конце приводится определение под запись учеников: «Если преобразование симметрии относительно точки О переводит фигуру F в себя, то она называется центрально - симметричной, а точка О называется центром симетрии. «
Десятая сцена посвящена доказательству теоремы «преобразование симметрии относительно точки является движением». В данной сцене упор сделан на выделение основных элементов, что способствует лучшему усвоению логики доказательства теоремы. Так как навигация по кадрам позволяет проигрывать сцену по шагам, то учителю рекомендуется дать это доказательство под запись. Привлекая к работе учеников только дополнительными вопросами (например, при рассмотрении треугольников XOY и X1OY1 попросить учеников выделить равные элементы и после правильного ответа отобразить их).
Симмерия относительно прямой
Сцены с 11 по 13 посвящены теме «Симетрия относительно прямой». В сцене 11 дается основной алгоритм построения симметричной точки относительно прямой. Основной упор сделан на постепенное выделение основных элементов на рисунке при построении. После ознакомления ученикам рекомендуется самостоятельно сделать данные построения.
С помощью сцены 12 ученикам предлагается усложненная задача на тему «Симметрия относительно прямой». Основное назначение презентации в том чтобы наглядно показать построение фигуры симметричной треугольнику, посредством построения 3-х симметричных точек и их последовательное соединение отрезками (переход с метки 12:9 на метку 12:10). После прохождния данного материала ученикам необходимо дать задачу на раскрытия понятия «центрально-симетричная фигура» (например, построение фигуры симметричной отночительно центр пересечения диагональ ромба), напомнив ученикам о прохождении данного понятия в предыдущей теме (сцена 8).
В 13 сцене происходит доказательство теоремы о том, что преобразование симметрии относительно прямой является движением. На рисунке к данной сцене наглядно демонстрируется почему абсциссы точек отличаются знаком (показывается при как при помощи сопровождающего текста, так и при помощи смещения равных линий на оси x) (метка 13:14). Данный момент учитель должен подчеркнуть, концентрируя внимание учеников на равных отрезках на оси ОX (равные отрезки выделены синим и красным цветом) и устно найти координату по оси ОХ точки А` и B`.
Поворот
Сцена 14 посвещена преобразованию «Поворот». Здесь особое внимание уделяется алгоритму построения образа точки при данном преобразовании. Наглядно при помощи транспортира показывается процесс построения угла против часовой стрелки, который ученик должен проделать. На этой теме рекомендуется уделить особое внимание построению образа точки при повороте, проделывая с учениками аналогичные задания.
Параллельный перенос
В 15 сцене ученики знакомятся с движением, при котором одновременно меняются координаты как по оси х, так и по оси y. (метка 15:6 – 15:7) Здесь показано как перемещается фигура при таком движении, благодаря чему ученики лутше запоминают данный вид преобразования. После демонстрации учитель обращает внимание учеников на какое именно расстояние переместилась точка Х фигуры по ее координатам x и y, отмеченных на осях.
Далее (метка 15:8 – 15:9) наглядно показывается при помощи выделенных на осях отрезках чему равны координаты по точки Х`.
В сцене 16 идет доказательство утверждения о том, что параллельный перенос является движением. На кадре 16:10-11 наглядно показано расстояние на которое произойдет перемещение точек (для того чтобы облегчить восприятие этого процесса, для каждой точки выбран свой цвет).Далее (кадр 16:12) показываем паралельный перенос двух точек на соответствующие расстояния по осям x и y. И на основании материала полученного учениками при введение понятия «паралельный перенос» делается вывод о координатах точек A` и В`. После, в кадре 16:14 идет одновременный быстрый показ формулы для подсчета AB2 и медленное появление отрезка AB, что ведет к наиболее быстрому и продуктивному управлению вниманием учеников. По аналлогичной схеме происходит подстчет A`B`2.