Определение особенностей кредитования физических лиц в КБ ПриватБанк
Рефераты >> Банковское дело >> Определение особенностей кредитования физических лиц в КБ ПриватБанк

Внедрение кредитного скоринга в практическую деятельность отечественных банков даст возможность:

¾ повысить эффективность управления кредитным портфелем банка на основании принятия взвешенных и обоснованных решений;

¾ снизить операционные расходы благодаря экономии рабочего времени работников кредитного отдела, поскольку в сравнении с традиционным анализом кредитной заявки снижается количество документации, которая обрабатывается;

¾ использовать качественно новые системы принятия решений относительно выдачи кредита и совершенствование моделей кредитования.

В последнее время скоринг становится все более популярным не только во время оценки кредитного риска, но и в других отраслях: при маркетинговом исследовании (для определения вероятности, что именно эта группа клиентов будет пользоваться этим видом продукции); работе с должниками (для определения наиболее эффективного метода возмещения убытков); выявлении мошенничества с кредитными карточками; определении вероятности, что клиент может перейти к конкуренту и др. Банки все чаще пользуются технологией "быстрой оценки" не только при выдаче потребительских кредитов, но и при кредитовании мелкого бизнеса. Для проведения скоринга в этом случае необходим минимальный пакет документов, а решение о выдаче кредита принимается после анализа основных данных о бизнесе клиента. Как правило, это сведения об объеме дохода от реализации продукции (работ, услуг), количество торговых мест, торговую площадь этих объектов, а также о личном имуществе владельца бизнеса.

Банки Украины предоставляют кредиты по большей части заемщикам, которые принадлежат к классам "А", "Б" и "В". Заемщикам, которые по результатами оценки финансового состояния попали К классам "Г" или "Д", кредиты выдают в отдельных случаях, например, для рефинансирования уже выданного ранее кредита, для реализации программы санации предприятия-заемщика или при условии наличия высоколиквидного обеспечения и тому подобное[26].

Методология построения скоринговых систем.

Методы и подходы, лежащие в основе скоринговых систем, весьма разнообразны. К основным известным и используемым в настоящее время методам могут быть отнесены следующие:

1. Линейный дискриминантный анализ.

Дискриминантный анализ – это раздел математической статистики, содержанием которого является разработка методов решения задач различения (дискриминации) объектов наблюдения по определенным признакам. Применительно к скорингу объекты наблюдения – это данные о потенциальном заемщике, признаки – характеристики (факторы). Дискриминируются заемщики на два класса: кредитоспособные и некредитоспособные. Процедуры дискриминантного анализа можно разделить на две группы. Первая группа процедур предназначена для описания (интерпретации) различия между существующими классами, вторая – для проведения классификации новых объектов в тех случаях, когда неизвестно заранее, к какому из существующих классов они относятся.

Пусть имеется множество объектов наблюдения (кредитных договоров с данными по заемщикам и результатом – кредит погашен должным образом или имели место проблемы). Каждая единица наблюдения характеризуется несколькими факторами (переменными): xij – значение j-й переменной у i-го объекта, при i = 1 .N; j = 1 .p. Все множество объектов разбито на несколько подмножеств (два и более), или классов. Из каждого подмножества взята выборка объемом nk, где k – номер подмножества (класса) при к = l .g. Признаки, которые используются для того, чтобы отличать один класс (подмножество) от другого, называются дискриминантными переменными (предикторами). Каждая из этих переменных должна измеряться либо по интервальной шкале, либо по шкале отношений.

Интервальная шкала позволяет количественно описать различия между свойствами объектов. Для задания шкалы устанавливаются произвольная точка отсчета и единица измерения. Примерами таких шкал являются возраст заемщика, уровень его среднемесячного дохода за последние 6 месяцев и т.д.

Шкала отношений – частный случай интервальной шкалы. Она позволяет соотносить категоризированные предикторы. Теоретически число дискриминантных переменных не ограничено, но на практике их выбор осуществляется на основании содержательного анализа исходной информации и соответствующих статистических процедур оценки вклада каждого предиктора в процесс формирования правильных решений по классификации. Число объектов наблюдения должно превышать число дискриминантных переменных как минимум на два, то есть p < N. Дискриминантные переменные должны быть линейно независимыми. Еще одним предположением при дискриминантном анализе является нормальность закона распределения многомерной величины, то есть каждая из дискриминантных переменных внутри каждого из рассматриваемых классов должна быть подчинена нормальному закону распределения. В случае когда реальная картина в выборочных совокупностях отличается от выдвинутых предпосылок, следует решать вопрос о целесообразности использования процедур дискриминантного анализа для классификации новых наблюдений, так как при этом затрудняются расчеты каждого критерия классификации. Линейная дискриминантная функция имеет вид:

D(X) = w0 + w1x1 + w2x2 + . + wn xn, (1.10)

где wi- коэффициенты.

Для случая дискриминации на два класса решающее правило выглядит следующим образом: если D(X) <= 0, объект Х относится к 1-му классу, если D(X) >= 0, - ко 2-му. Необходимо отметить, что дискриминантный анализ является достаточно грубым и приближенным методом для скоринга в силу сделанных предположений и линейности самой дискриминантной функции. Однако данный метод важен в начале разработки скоринговых систем для оценки важности ("просеивания") предикторов.

2. Многофакторная логистическая регрессия.

Логика построения уравнения логистической регрессии аналогична построению линейной дискриминантной функции:

log(p/(1-p)) = w0 + w1x1 + w2x2 + . + wnxn, (1.11)

где р – вероятность дефолта (невозврата кредита),

w – весовые коэффициенты,

х – характеристики клиента.

В результате распознавания или классификации по предъявляемому объекту – потенциальному заемщику уравнение логистической регрессии дает оценку вероятности дефолта (невозврата) кредита. Если разработчиками скоринговой системы заранее установлено определенное пороговое значение этой вероятности для разделения двух классов объектов (например, "надежный заемщик" и "проблемный заемщик"), такая конструкция будет способна в автоматическом режиме формировать вывод о допустимости или недопустимости выдачи кредита. Все регрессионные методы чувствительны к корреляции между характеристиками, поэтому в модели не должно быть сильно коррелированных независимых переменных.

3. Деревья решений.

В методе деревьев решений сегментация (классификация) объектов осуществляется путем последовательного дробления факторного пространства Х1, Х2, ., Xm на вложенные прямоугольные области. Первый шаг – разделение по самому значимому фактору (характеристике). Последующие шаги – повторение процедуры до тех пор, пока никакой вариант последующей сегментации не даст значимого различия между соотношением объектов разных классов по сравнению с полученными ранее сегментами. Количество разветвлений, факторы, по которым в узлах дерева решений осуществляется ветвление, и пороговые значения факторов в узлах дерева решений определяются в методе автоматически.


Страница: