Строение и принцип действия переносчиков
1) гидрофильного глобулярного F1-комплекса, содержащего места связывания нуклеотидов и функционирующего в качестве АТРазы, и 2) мембраносвязанного F0 - комплекса, который функционирует как Н+ - проводящий канал. F1 - и F0 - комплексы могут отсоединяться друг от друга, а после очистки их можно реконструировать с восстановлением функциональной активности.
F1-комплекс из Е. coli содержит пять субъединиц в стехиометрии aifiiybe. Между тремя парами в составе F1 наблюдается асимметрия, возникающая, по всей вероятности, в результате асимметричных взаимодействий с другими субъединицами. В составе каждого комплекса имеется по три каталитических центра, и для быстрого оборота фермента необходимо, чтобы АТР был связан более чем с одним местом связывания. Для объяснения механизма катализа были построены различные модели с чередованием мест связывания, в частности модель, согласно которой в ходе катализа происходит физическое вращение частей фермента.
F0-комплекс из фермента Е. coli устроен достаточно просто, он содержит только три субъединицы в стехиометрии a1b2c10. Все эти субъединицы необходимы для формирования Н+ - проводящего канала. Остается неясным, можно ли рассматривать F0 как канал в том смысле, как мы его понимаем в этой главе. Полагают, что Н+ - проводящая часть F0 образована α-спиралями из множественных копий γ - субъедииицы. По всей вероятности, эта субъединица содержит пять трансмембранных α - спиралей, в то время как а - и b - субъединицы - по одной. Результаты, полученные с помощью генетических методов, согласуются с предположением, согласно которому погруженные в мембрану части всех трех субъединиц играют важную роль в обеспечении протонной проводимости.
Изучение этой системы показывает нам, сколь успешным может быть применение генетических методов для исследования строения мембранных белков, для которых отсутствуют кристаллографические данные высокого разрешения. Очень важно выяснить, приводит ли замена единственной аминокислоты в таком белке к конформационным изменениям, которые скажутся на катализе. По-видимому, результат такой замены сильно зависит от природы переносчика. Например, как мы уже обсуждали, очень обнадеживающими в этом отношении являются данные, полученные для лактозопермеазы. Очевидно, в следующем десятилетии в изучении взаимосвязи между структурой и функцией мембранных белков главную роль будут играть различные генетические методы, в частности направленный мутагенез.
Рассмотрим результаты, полученные к настоящему времени для F1F0 - ATPaзы из Е. coli.
1. Наличие многочисленных мутантных форм позволяет идентифицировать участок, являющийся, по всей вероятности, каталитическим нуклеотидсвязывающим доменом. Исследование мутантных форм показало также, что между α - и β - субъединицами имеется конформационное сопряжение.
2. Показано, что мутантные формы неспособны к сопряжению транспорта Н+ с катализируемой комплексом F1, АТРазной активностью, а также к связыванию комплексов F1, и F0.
3. Показано, что определенные аминокислотные остатки в субъединицах а, b и γ опосредуют протонную проницаемость; имеющиеся генетические данные позволяют предположить, что субъединица b непосредственно контактирует в мембране с субъединицами а и γ.
Связаны ли все эти явления с локальными или глобальными конформационными изменениями, покажут дальнейшие исследования. Пока же мы не может сказать определенно, как происходит сопряжение гидролиза АТР и транспорта Н+ при работе АТРазы F1F0-типа, а также с чем связана протонная проводимость.
Важными в этом отношении могут оказаться данные о том, что цитоплазматическая мембрана анаэробной бактерии Propionigenium modestum содержит Na+ - зависимую АТРазу F1F0-типа. Если этот фермент работает как первичный АТР-зависимый Na+ - насос, то логично предположить, что механизм функционирования Н+ - АТРазы и Na+ - АТРазы одинаков. Например, это позволит исключить модели прямого сопряжения.
6.3 Три других класса переносчиков
Помимо АТР-зависимых активных переносчиков Е1Е2 - и F1F0 - типов есть еще три класса активных переносчиков, использующих свободную энергию гидролиза макроэргических фосфатных связей. О реальных механизмах транспорта или сопряжения в этих системах известно немного. Отметим несколько интересных их особенностей.
1. Бактериальные фосфотрансферазы. Этот комплекс был обнаружен только в бактериях; он катализирует транспорт Сахаров, таких, как глюкоза и маннитол. Уникальной особенностью этой системы является то, что транспорт сахара сопровождается его фосфорилированием. Получаемое фосфатное производное сахара уже не может служить субстратом для переносчика в бактериальной мембране, и таким образом предотвращается обратный поток сахара через эту систему. Вспомним, что в переносчиках Е1Е2-типа фосфорилирование переносчика стабилизирует форму с низким сродством к переносимому веществу (например, Са2+ или Na+), что также препятствует обратному переносу транспортируемых веществ.
Конечным донором фосфата в фосфотрансферазной системе является фосфоенолпируват. Фосфат переносится специфической последовательностью растворимых фосфорилированных интермедиатов в цитоплазму к мембраносвязанному транспортному белку, называемому фермент II или Е II. Существует группа ферментов Е II-типа, специфичных к разным сахарам, но обладающих сходной первичной структурой. По всей вероятности, внутри мембраны ферменты Е II - типа образуют димеры. Высказывалось предположение, что они формируют каналы. Эти белки чувствительны к реагентам, действующим на сульфгидрильные группы, и к окислению, что может играть важную роль в условиях in vivo. Немного известно о том, каким образом фосфорилированные ферменты Е II - типа осуществляют транспорт и фосфорилирование сахаров. Разумной представляется модифицированная модель с чередованием конформаций и единственным местом связывания.
2. Бактериальные периплазматические транспортные системы. В дополнение к системам симпорта (катион - сахар) и фосфотрансферазной системе бактерии имеют еще одну систему активного транспорта растворимых веществ, которая используется для различных аминокислот и сахаров. Так, охарактеризованы системы, специфичные к гистидину (S. typhimurium) и мальтозе (Е. coli). К сожалению, биохимические данные, которые могли бы дополнить интенсивные генетические исследования мембраносвязанных компонентов этих систем, весьма немногочисленны. Уникальной особенностью этих систем является то, что они содержат субстратспецифичные связывающие белки, локализованные в периплазматическом пространстве. Роль этих белков заключается в связывании переносимого вещества и последующей передаче его собственно транспортирующей системе цитоплазматической мембраны. Специфичность системы определяется как связывающими белками, так и мембраносвязанными компонентами. Цитоплазматический мембранный компонент содержит три субъединицы, две из которых являются трансмембранными белками, а третья, по всей вероятности, прочно связана с цитоплазматической стороной мембраны. Как оказалось, этот третий компонент транспортного комплекса содержит место связывания нуклеотидов, где, как предполагается, происходит гидролиз АТР - реакция, являющаяся движущей силой активного транспорта. Однако прямые данные, подтверждающие эту гипотезу, отсутствуют. Практически ничего не известно о механизме транспорта, за исключением того, что для него необходим растворимый связывающий белок.