Строение и принцип действия переносчиков
5.2 Группа митохондриальных переносчиков.
Гомологичность некоторых транспортных белков внутренней митохондриальной мембраны свидетельствует об их близком родстве: по всей вероятности, они произошли от общего предка в результате дивергентной эволюции. Имеются по меньшей мере три представителя этой группы:
1) ADP/ATP-транслоказа;
2) переносчик фосфата;
3) разобщающий белок.
В структуре этих белков имеется много общего, и тем не менее они существенно различаются по субстратной специфичности. ADP/ATP-транслоказа катализирует транспорт ADP и АТР через бислой. При физиологических условиях АТР транспортируется из митохондрий, a ADP переносится в матрикс. Механизм этого процесса, по-видимому, аналогичен таковому для белка полосы 3, за исключением того, что АТР несет на один отрицательный заряд больше, чем ADP, и поэтому обмен зависит от трансмембранного электрического потенциала на митохондриальной мембране. Переносчик фосфата осуществляет одновременно и симпорт Н+, и, по-видимому, механизм его работы сходен с описанным ранее механизмом для Н+ - лактозопермеазы из Е. coli. Этот белок катализирует транспорт фосфата внутрь митохондрий. Благодаря симпорту Н+ процесс в целом является электронейтральным и не зависит от трансмембранного потенциала. Разобщающий белок был обнаружен в митохондриях из клеток бурого жира млекопитающих; его функция заключается в диссипации протонного электрохимического градиента, создаваемого при функционировании дыхательной цепи, в результате чего генерируется тепло. Разобщающий белок может также катализировать транспорт анионов, например С1 - , так что, может быть, на самом деле он катализирует транспорт ОН-, который невозможно экспериментально отличить от транспорта Н+. Этот переносчик связывается с нуклеотидами, которые ингибируют транспорт, и его работа может регулироваться жирными кислотами.
Все три переносчика, а возможно, еще и α-кетоглутарат/малат-транслоказа, имеют сходное строение; этот вывод был сделан на основе данных об их аминокислотной последовательности. Все они имеют мол. массу около 33000 Да и состоят из трех гомологичных доменов, каждый из которых содержит 100 аминокислот. По всей вероятности, эти три домена образовались в результате утроения единственного гена. Была построена модель, согласно которой каждый из гомологичных доменов дважды пересекает мембрану, а вся субъединица содержит шесть трансмембранных α-спиралей. С этой моделью согласуются данные по химической модификации. Отметим, что такая структура имеет много общего с Na+ - каналом, состоящим из четырех родственных гомологичных доменов. ADP/ATP-транслоказа является димером и, по-видимому, содержит единственный канал, по которому осуществляется транспорт. Такой вывод основывается на результатах исследований по связыванию ингибиторов с высоким сродством (например, карбоксиатрактилозида).
5.3 Переносчик глюкозы из мембраны эритроцита
Этот переносчик охарактеризован наиболее полно из всех белков, катализирующих диффузию единственного вещества через мембрану. Он переносит через эритроцитарную мембрану D-глюкозу, которая затем используется при гликолизе. Такие же или аналогичные переносчики глюкозы присутствуют и в других типах животных клеток. Большой прогресс в этой области исследований был достигнут благодаря секвенированию ДНК, кодирующей переносчик глюкозы из клеток гепатомы человека и из клеток мозга крысы. Очищенный переносчик из эритроцитов представляет собой гликопротеин с кажущейся мол. массой 55 000. По-видимому, в мембране он находится в виде димера. Если судить по данным об аминокислотной последовательности, то переносчик должен содержать 12 трансмембранных α-спиральных участков, однако экспериментальные данные не дают окончательного ответа на этот вопрос. Очищенный переносчик удалось встроить в фосфолипидные везикулы, при этом оказалось, что он ориентирован асимметрично.
Как и при исследовании канальных белков, очень важную роль сыграли опыты с использованием специфических ингибиторов, обладающих высоким сродством к переносчику. В число этих ингибиторов входят цитохалазин В и флоретин, которые связываются с переносчиком со стехиометрией 1:
1. Одни ингибиторы (цитохалазин В) связываются с переносчиком только в том случае, если они находятся с цитоплазматической стороны мембраны, другие специфически связываются с наружной стороны мембраны (флоретин). Места связывания двух указанных ингибиторов находятся вблизи С-конца полипептида.
Большинство кинетических данных и данных по связыванию согласуются с простой моделью четырех состояний (рис.2), в которой предполагается, что существует единственное место связывания D-глюкозы, находящееся внутри канала. Для измерения индивидуальных констант скоростей использовали ЯМР и метод остановленной струи. Конформация загруженного канала изменяется с константой скорости 2000 с-1, которая приблизительно в семь раз выше аналогичной константы для незагруженного канала (300с-1 при 23°С). Следовательно, обмен глюкозы происходит с большей скоростью, чем транспорт как таковой, для осуществления которого незагруженный переносчик должен возвратиться через мембрану. Природа конформационного изменения неизвестна, хотя оно было зарегистрировано при помощи инфракрасной спектроскопии с преобразованием Фурье и, как предполагают, включает скольжение α-спиралей друг относительно друга.
Между переносчиком глюкозы из клеток млекопитающих и некоторыми транспортными системами бактерий наблюдается значительная гомология. Удивительно, что такая гомология наблюдается также между переносчиком глюкозы и белками, осуществляющими симпорт Н+ - арабинозы и Н+ - ксилозы. Эти симпортеры, как и описываемая ниже система транспорта Н+ - лактозы, используют для аккумуляции указанных Сахаров электрохимический протонный градиент. Переносчик глюкозы из мембраны эритроцитов не транспортирует Н+ и не способен к транспорту против градиента глюкозы. Очень важными представляются работы по изучению взаимосвязи структуры белкового комплекса и механизма его работы.
5.4 Лактозопермеаза из е. Соli
Этот комплекс изучен наиболее полно из всех симпортных белков. Он кодируется lacY-геном, который является частью lac-оперона, и его часто называют lac-пермеазой. Ген lacY был клонирован и секвенирован, и из штамма-сверхпродуцента был выделен белок - продукт этого гена. Пермеазу можно изучать в цитоплазматических мембранных везикулах (кабакосомах), в интактных клетках или в реконструированных протеолипосомах. Судя по данным об аминокислотной последовательности, белок имеет мол. массу 46 500, хотя результаты электрофореза в полиакриламидном геле с ДСН дают другую величину. Почти не вызывает сомнения, что функциональной единицей в мембране является мономер, хотя некоторые данные свидетельствуют о существовании димерной формы пермеазы in vivo.
На основании данных об аминокислотной последовательности лактозопермеазы были построены модели, согласно которым этот белок имеет 12 или 14 трансмембранных α-спиралей. Это в основном согласуется со спектроскопическими данными, свидетельствующими о высоком содержании α-спиралей, и немногочисленными топологическими данными.