Мембранная энзимология
Рефераты >> Биология >> Мембранная энзимология

Подобные эффекты наблюдались для некоторых митохондриальных и микросомных ферментов - как in situ, так и встроенных в фосфолипидные везикулы, например для арилсульфатазы С, использующей отрицательно заряженный субстрат, или для моноаминооксидазы, катализирующей превращения катионного субстрата. Изменение липидного окружения /3-гидроксибути-ратдегидрогеназы также влияет на величины Км для NADH. Полагают, что это влияние обусловлено изменением плотности поверхностного заряда.

В заключение отметим, что в литературе активно обсуждалась роль поверхностного заряда тилакоидных мембран как фактора, регулирующего латеральное распределение мембранных белков и взаимодействие между мембранами. В этом случае, однако, поверхностный заряд мембраны определяется главным образом белковыми компонентами, а не липидами. Каж бы то ни было, ясно, что учет поверхностного потенциала совершенно необходим при анализе работы многих мембранных ферментов in vivo, а также при реконструировании систем из очищенных компонентов, моделирующих природные структуры.

2. Реконструкция мембранных ферментов

После того как мембранный фермент очищен, для изучения его каталитической активности желательно, а часто и необходимо реконструировать его с фосфолипидами. Кинетические характеристики многих ферментов in situ и после очистки и реконструкции одинаковы. Несмотря на то что свойства фермента в искусственных системах могут изменяться, изучение очищенных и реконструированных ферментов дает большие преимущества. В частности, а такой системе ие протекают различные конкурирующие реакции, присущие биомембранам. Удается устранить и другие осложняющие исследование проблемы. Использование реконструированной системы позволяет не только охарактеризовать изолированную систему, но и определить минимальное число компонентов, необходимых для проявления тех или иных биохимических активностей. С помощью реконструкции в фосфолипидные везикулы, например, было показано, что за поглощение лактозы клетками Е. coli ответствен только один белок, лактозопермеаза. Аналогичным способом было однозначно определено минимальное число белковых компонентов, необходимых для реконструкции дыхательной цепи Е. coli и системы аденилатциклазного гормонального ответа.

Для встраивания солюбилизированных в детергенте очищенных мембранных компонентов в модельные мембранные системы разработано несколько методов. Чаще всего ферменты встраиваются в однослойные фосфолипидные везикулы. Характеристики же белков, активно или пассивно увеличивающих ионную проводимость мембраны, часто определяют после их встраивания в плоский бислой. Плоские мембраны удобны для электрических измерений, позволяющих определить величину ионной проводимости и прочие производные характеристики, например зависимость доли открытых каналов от приложенного электрического напряжения. В таких системах, однако, трудно или даже невозможно определить биохимические характеристики белка, в частности его каталитические активности, отличные от ионной проницаемости.

2.1 Встраивание мембранных ферментов в липидные везикулы

Для встраивания мембранного белка в липидную везикулу прежде всего необходимо избавиться от находящегося в препарате белка детергента, который, если он присутствует в значительных количествах, дестабилизирует фосфолипидный бислой. Обычно детергент удаляют уже из смеси белка с фосфолипидом, но в некоторых случаях белок очищают от детергента до начала реконструкции. Для удаления детергента используют гель-фильтрацию, диализ или адсорбцию на поверхности шариков из полистирола. Последний способ применяют в первую очередь для удаления тритона Х-100. Все перечисленные методы довольно эффективны, однако следует иметь в виду, что даже после самых интенсивных обработок в системе обычно всегда остается то или иное количество связанного детергента.

Методы реконструкции можно разделить на две группы.

I. Процедуры, при которых белок предварительно очищают от детергента, а затем проводят реконструкцию.

II. Процедуры, в которых белки и фосфолипиды смешивают в присутствии детергента, а затем удаляют детергент до образования протеолипосом. Единственное ограничение здесь состоит в следующем: выбранный фосфолипид должен быть способен к формированию стабильных бислоев. Нельзя, например, использовать ненасыщенные фосфатидилэтаноламины. Весьма удобен суммарный фосфолипид из соевых бобов, поскольку он относительно недорог, легкодоступен и применим во многих случаях.

I. Реконструкция без избытка детергента

Условия включения мембранных белков в предварительно сформированные фосфолипидные везикулы часто совпадают с условиями, способствующими слиянию фосфолипидных везикул. В основе обоих процессов лежат определенные нарушения бислойной структуры, или образование "дефектов", которые могли бы облегчить как встраивание белка, так и слияние везикул. Механизмы этих процессов изучены мало. Возможной трудностью в применении этих методов является агрегация белка.

1. Инкубация белка с заранее полученными везикулами. Этот способ применим далеко не всегда и используется для реконструкции не пронизывающих бислой белков с ограниченной гидрофобной поверхностью, например цитохрома bs и /З-гидроксибутиратдегидрогеназы. Конформация встроенного таким образом белка, однако, отличается от нативной.

Реконструкция с участием амфифильных катализаторов. В ряде работ было показано, что добавление в белково-фосфолипидную смесь амфифильных веществ в низких концентрациях облегчает встраивание в везикулы таких мембранных ферментов, как бактериородопсин или цитохром с-оксидаза. В качестве амфифильных веществ использовали холестерол, короткоцепочечные фосфатидилхолины и жирные кислоты. Данный способ хорош тем, что в нем не используются какие-либо грубые процедуры, в том числе обработка избытком детергентов, однако пока он мало распространен.

Замораживание-оттаивание/обработка ультразвуком. В некоторых случаях с успехом используется метод замораживания-оттаивания смеси с последующей обработкой ультразвуком. Эта методика, однако, применяется нечасто из-за опасности денатурации белка. Иногда для облегчения реконструкции используют простую обработку ультразвуком. Вероятнее всего, белок вначале включается в маленькие везикулы, обладающие высокой кривизной. Замораживание-оттаивание, возможно, нужно для слияния мелких протеолипосом в более крупные и более однородные по размерам.

2. Реконструкция с использованием детергентов

В настоящее время для реконструкции гораздо чаще используют методики, состоящие в солюбилизации смеси белка и фосфолипида детергентом и последующем удалении детергента. После его удаления белок и фосфолипид спонтанно формируют однослойные везикулы, вполне пригодные для энзимологических исследований. Обычно выбирают детергенты с высокой критической концентрацией мицеллообразования и малыми размерами мицелл, с тем чтобы их можно было легко удалить диализом или гельфильтрацией. Чаще всего используют холат натрия и октилглюкозид. Распределение полученных везикул по размерам определяется соотношением детергент: фосфолипид, а также способом и скоростью удаления детергента. Обычно используют диализ как более медленный способ. В качестве примеров можно привести встраивание цитохром с-оксидазы и Na + /K+-ATPa3bi.


Страница: