Мембранная энзимология
Рефераты >> Биология >> Мембранная энзимология

Иные проблемы при измерении активности мембранных ферментов возникают, когда либо фермент, либо субстрат находится как в мембраносвязанной, так и в растворенной формах. Примерами такого рода служат "поверхностные" ферменты - липазы или факторы свертывания крови. Для анализа кинетики таких систем необходимо знать соотношение между формами фермента в данных экспериментальных условиях и каталитические активности каждой из форм. Во всех этих случаях смысл величин максимальной скорости и константы Михаэлиса может быть совершенно иным, чем для ферментов, активность которых измеряется в гомогенной среде, что сильно осложняет интерпретацию этих параметров.

Гьстерезис и гетерогенность. Мембранные ферменты обладают и другими особенностями, затрудняющими интерпретацию кинетических данных. Эти особенности связаны с солюбилизацией. Каталитическая активность мембранных ферментов часто очень сильно зависит от используемого детергента или фосфолипида. Обычно активность мембранных ферментов измеряют в смеси, содержащей детергент и экзогенно добавленный фосфолипид. Кроме того, ферментный препарат нередко содержит соочищаемые с ним эндогенные липиды. В таких условиях физическое состояние фермента, в частности степень его агрегации, оказывается весьма неопределенным и скорее всего гетерогенным. Часто в одной и той же среде, компоненты которой смешивались в разной последовательности, получают совершенно разные ферментативные активности. Такая зависимость от предыстории препарата являет собой пример гистерезиса и весьма типична для мембранных ферментов. По существу фермент "застревает" в метастабильном состоянии и не может приобрести наиболее стабильную "рабочую конформацию". Например, простое смешивание солюбилизированного мембранного белка с фосфолипидными великулами скорее всего не приведет к встраиванию белка в липосомы. Для достижения успешной реконструкции разработаны специальные процедуры, позволяющие избежать перехода системы в нежелательное метастабильное состояние. В качестве примера фермента, образующего крупные агрегаты, можно привести бактопренолкиназу, очень гидрофобный белок из Staphylococcus aureus. Его активность не зависит от степени агрегации, что встречается далеко не всегда.

Явление гистерезиса сильно зависит от типа фосфолипида, поэтому данные по специфичности липидов в отношении активности отдельных мембранных ферментов часто оказываются весьма ненадежными.

Ферметы в везикулах. Часто в исследованиях используют мембранные ферменты, встроенные в бислой замкнутых везикул. Это могут быть либо ферменты in situ, содержащиеся в изолированных природных мембранах, либо очищенные ферменты, встроенные в липосомы. В таких экспериментах возникают свои проблемы. Наиболее очевидная из них связана с тем, что активный центр фермента может находиться внутри везикулы и, следовательно, быть изолированным от растворимого в воде субстрата. С этим связана проблема так называемой скрытой ферментативной активности, выявляемой только после того, как везикулы по тем или иным причинам станут проницаемыми или разрушатся. Это явление часто используют для определения ориентации мембранного фермента в везикуле. Доля скрытой активности прямо соответствует доле фермента, активный центр которого локализован внутри везикулы. При этом можно использовать только такие субстраты, которые не способны проникать через мембрану.

Проблемы другого рода возникают при измерении активности трансмембранных ферментов, которые катализируют реакции, сопровождающиеся транспортом веществ или зарядов через бислой. Примерами таких ферментов могут служить цитохром с-оксидаза, катализирующая перенос электронов через мембрану и транспорт протонов в противоположном направлении, а также разнообразные АТР-зависимые ионные насосы, например Са2 + - АТРа-зы. При встраивании в везикулы преимущественно в одной ориентации относительно внутренней и наружной сторон везикулы такие ферменты создают трансмембранный градиент концентрации веществ или электрический потенциал. Именно в этом и состоит их физиологическая функция. В везикулах с маленьким внутренним объемом, однако, этот градиент будет создаваться очень быстро, что приведет к фактическому уменьшению числа оборотов фермента, если не будут приняты соответствующие меры. Это уменьшение связано с тем, что химическая работа, совершаемая при переносе молекулы, иона или электрона против существующего градиента, увеличивается с увеличением этого градиента. При градиенте выше определенного уровня фермент вообще перестает работать. Система, в которой происходит такое уменьшение активности, называется "сопряженной", а сама эта активность является мерой того, насколько целостны везикулы и в какой мере предотвращена утечка ионов или молекул в направлении градиента, созданного с помощью фермента. Степень сопряжения можно оценить, измеряя активность фермента в условиях, когда градиенту не дают образовываться. Например, градиент электрического потенциала, создаваемый на мембране везикулы цитохром с-оксидазой, можно разрушить, добавив в среду ионофор, увеличивающий ионную проницаемость бислоя. При этом необходимо, чтобы внутри везикулы была высокая концентрация буфера, поскольку в противном случае утилизация протонов внутри везикулы с образованием воды приведет к быстрому и сильному защелачиванию внутренней среды, что может повлиять на ферментативную активность.

Работа некоторых ионных каналов и ферментов прямо регулируется трансмембранным потенциалом. С помощью флуоресцентных и спиновых меток показано также, что при наличии разности потенциалов может существенно увеличиваться микровязкость бислоя. Это тоже сказывается на активности ферментов. И наконец, утверждается, что трансмембранный потенциал влияет на степень агрегации некоторых мембранных белков, но физиологическая роль этого явления неизвестна. Все эти эффекты наблюдаются только на замкнутых везикулах.

Влияние поверхностного потенциала. Большинство биомембран содержат значительное количество отрицательно заряженных фосфолипидов, а следовательно, несут суммарный отрицательный заряд. С этим отрицательным зарядом, распределенным по поверхности мембраны, связан поверхностный электрический потенциал. Он вызывает уменьшение концентрации отрицательно заряженных ионов в прилегающем к мембране слое по сравнению со средней объемной концентрацией и увеличение локальной концентрации положительно заряженных ионов вблизи поверхности мембраны. Поверхностный потенциал, изменяя локальную концентрацию заряженных субстратов и протонов, может довольно существенным образом сказаться на поведении ферментов, активный центр которых локализован у поверхности мембраны. При физиологической ионной силе этот эффект будет проявляться главным образом в области, непосредственно примыкающей к заряженной поверхности мембраны, но тем не менее может оказаться весьма существенным. Влияние поверхностного потенциала проявляется в изменении измеряемой величины Км для заряженных субстратов или в сдвиге рН-зависимости активности фермента, поскольку локальная концентрация любого заряженного вещества будет либо выше, либо ниже, чем концентрация в объеме. Поэтому кинетические характеристики мембранного фермента, встроенного в везикулы, которые получены из разных фосфолипидов и имеют разную поверхностную плотность заряда, могут различаться, и в свою очередь отличаться от свойств фермента, находящегося в нейтральных детергентных мицеллах.


Страница: