Мембранная энзимология
Латеральное разделение компонентов цепи в тилакоидах явно не способствует ускорению переноса электронов между ферментами. Возможно, оно необходимо для эффективного перераспределения световой энергии между двумя фотосистемами. Фосфорилирование белка светособирающего комплекса II приводит к его перераспределению между гранальными и стромальными участками мембраны, облегчая его взаимодействие с фотосистемой I в стромальных участках, что в свою очередь увеличивает долю энергии возбуждения, поступающей на реакционные центры фотосистемы I.
5.5 Взаимодействия между мембранными и растворимыми ферментами
Биомембраны играют важную роль в функционировании целого ряда растворимых ферментов. После разрушения клетки многие ферменты можно обнаружить и в растворимой, и в мембранной фракциях. Отнесение некоего фермента к классу периферических мембранных белков зависит от силы его взаимодействия с мембраной и способа выделения. Кроме того, некоторые растворимые ферменты в специфических условиях связываются с мембраной, и, следовательно, в зависимости от физиологического состояния клетки локализуются либо на мембране, либо в цитозоле. Кроме того, существует группа растворимых ферментов, катализирующих реакции с участием мембраносвязанных субстратов. Для функционирования такие белки должны быть способны хотя бы временно связываться с мембраной.
Во всех этих случаях мембрана выполняет следующие функции:
1) определяет локализацию или компартментацию фермента или группы ферментов;
2) осуществляет аллостерическую активацию или инактивацию ферментов в определенных условиях или в определенной области в клетке;
3) создает среду, в которой липофильные субстраты могут быть превращены в соответствующие продукты.
6. Растворимые ферменты, которые при необходимости могут связываться с мембраной
Пока эта важная группа насчитывает небольшое число ферментов, но, по-видимому, в недалеком будущем их список увеличится. Наиболее характерный пример - протеинкиназа С, хотя и другие представители этой группы неплохо охарактеризованы.
6.1 Протеинкиназа С
Это ключевой фермент системы передачи сигнала, запускаемого быстрым расщеплением фосфатидилинозитолов в плазматической мембране. Такие внеклеточные вещества, как нейромедиаторы, гормоны или факторы роста, связываются со специфическими рецепторами на поверхности клетки. Это приводит к активации фосфолипазы С, которая начинает гидролизовать фосфатидилинозитолы с образованием вторых посредников. Один из продуктов гидролиза, инозитол-1,4,5-трифосфат, вызывает увеличение концентрации свободного кальция внутри клетки. Второй продукт, 5я-1,2-диацилглицерол, активирует протеинкиназу С, что в свою очередь приводит к фосфорилированию целого ряда белков-мишеней, многие из которых, например рецептор фактора роста эпидермиса, являются мембраносвязанными. Согласно современным представлениям, данная система участвует в осуществлении целого ряда клеточных функций, в частности в делении, дифференцировке и экзоцитозе.
До активации клетки какими-либо экзогенными агентами протеинкиназа С остается неактивной и обнаруживается только в цитозоле. Однако после стимуляции клетки фермент быстро активируется и оказывается в мембранных фракциях. Исследования in vitro показали, что для связывания с мембраной и активации необходимы кислые фосфолипиды, а также Са2 + и диацилглицерол. Специфичность к фосфолипиду, необходимому для активации, до некоторой степени зависит от природы субстрата. Для активации фосфотрансферазной активности фермента можно добавить прямо к клеткам проникающие через мембрану коротко цепочечные диацилглицеролы, например диоктаноилглицерол. Природные вторые посредники, длинноцепочечные диацилглицеролы, нерастворимы в воде и остаются в мембране. Аналогичное действие оказывают, по-видимому, промоторы опухолевого роста форболовые эфиры: как показано, они способны связываться с ферментом и вызывать те же изменения, что и эндогенный сигнал. После связывания форболовых эфиров или диацилглицеролов возрастает сродство фермента к Са2+ и фосфатидилсерину. Показано, что эффективным конкурентным ингибитором фермента является сфингозин.
На самом деле протеинкиназа С представлена несколькими разными, но близкими по структуре полипептидами с мол. массой - 80000. Например, из мозга кролика выделено три формы. Протеинкиназа С имеет двухдоменную структуру. Один домен содержит каталитические центры, связывающие АТР и белок-субстрат, и функционирует как сериновая и треониновая фосфотрансфераза. Второй домен, по-видимому, участвует в связывании фосфатидилсерина, диацилглицерола и Са2 +. С помощью мягкого протеолиза можно разделить два этих домена, получив полностью активный каталитический фрагмент с мол. массой - 50000. Таким образом, активировать фермент можно двумя взаимоисключающими способами: протеолизом и связыванием с мембраной. Таким же образом ведут себя и некоторые другие липидзависимые ферменты, например пируватоксидаза. Физиологическое значение протеолитической активации неясно.
Очищенный фермент был встроен в фосфолипидные везикулы и в смешанные везикулы, содержащие тритон Х-100 и фосфолипиды. В обоих случаях было показано, что само по себе связывание липида ферментом необходимо, но не достаточно для проявления ферментативной активности. Например, для связывания фермента с фосфолипидными везикулами достаточно 2 "Уо фосфатидилсерина, в то время как для оптимального фосфорилирования его необходимо уже 50. В норме содержание фосфати-дилсерина в плазматической мембране составляет 8-10%. Поскольку фермент активируется в смешанных мицеллах, содержащих примерно 20 мол. % фосфатидилсерина в тритоне Х-100, наличие бислойной структуры не является необходимым, что, вообще говоря, весьма типично для липидзависимых ферментов. Зависимость наблюдаемой активации от концентрации фосфатидилсерина свидетельствует о кооперативном характере взаимодействий фермента и липида, что также довольно обычно. По оценкам функционально активный фермент представляет собой комплекс, содержащий мономер фермента, одну молекулу диацилглицерола, один или более ионов Са2+ и по крайней мере четыре молекулы фосфатидилсерина. Связывание всегда происходит с поверхностью мембраны, но роль Са2+ неизвестна. Он может, например, хелатировать карбоксильные группы фосфатидилсерина и какие-то группы в белке и/или играть роль аллостерического регулятора при связывании белка. Тот факт, что фермент может быть помечен иодонафталин-1-азидом, служит указанием на некоторое проникновение белка в гидрофобную зону бислоя, но не более того.
6.2 Эффект поверхностного разведения в смешанных мицеллах
Рис. иллюстрирует интересную особенность протеинкиназы С и других мембранных ферментов, выявляемую при измерении их активности в системах со смешанными мицеллами. В этом эксперименте измеряли зависимость способности фермента связывать форболовый эфир от концентрации тритона Х-100. Если поддерживать постоянным содержание фосфатидилсерина в мольных процентах, а концентрацию тритона Х-100 увеличивать, то фермент будет связывать форболовый эфир даже при высокой концентрации детергента. Однако если поддерживать постоянной объемную концентрацию фосфолипида и увеличивать количество детергента, то фермент перестанет связывать форболовый эфир при высоких концентрациях тритона Х-100. Для активации фермента важна не объемная, а поверхностная концентрация липида, иными словами, число молекул липида на мицеллу. Если эта величина падает, то уменьшаются также способность фермента связываться с такими смешанными мицеллами и способность активироваться. Это явление называется явлением поверхностного разведения.