Кометаболизм ЭДТА и глюкозы у бактериального штамма LPM-4
Рефераты >> Биология >> Кометаболизм ЭДТА и глюкозы у бактериального штамма LPM-4

Анион ЭДТА4- содержит 10 активных центров, способных осуществлять координацию лиганда ионами металлов: 2 атома азота и 8 атомов кислорода. В твердой фазе в качестве донорных атомов могут выступать все 10 центров. Однако, геометрия лиганда такова, что с одним атомом металла он может образовывать не более 6 связей: 2 с атомами азота и 4 с атомами кислорода разных ацетатных фрагментов ЭДТА. При этом образуется 5 пятичленных металлоциклов: один этилендиаминный (Е-цикл) и четыре глицинатных (Gly- циклы). Центральный Е-цикл и два Gly-цикла лежат приблизительно в одной плоскости, называемой “экваториальной” плоскостью координационного октаэдра. Эти два Gly-цикла обозначаются как G-циклы. Средние плоскости двух других глицинатных циклов располагаются почти перпендикулярно к экваториальной плоскости и обозначаются как R-циклы [7].

1.2. Бактериальная деградация ЭДТА

ЭДТА характеризуется очень слабой биологической разрушаемостью.

На рисунке 2 приведена предполагаемая схема деградации ЭДТА, которая была изучена у ЭДТА – разрушающего штамма DSM-9103 [4]. Деградация ЭДТА осуществляется монооксигеназной системой. В бактериальных клетках оксигеназные системы выполняют пластическую функцию, окисляя углеродсодержащие вещества, обеспечивают поступление углерода в клетки.

В. Идеализированная октаэдрическая структура комплекса металл-ЭДТА

Физиологическая роль оксигеназ сводится к конкретной задаче увеличения водорастворимости, полярности окисляемой молекулы [8, 9].

ЭДТА-монооксигеназа состоит из двух субъединиц [10]. Субъединица В является оксидоредуктазой, которая переносит восстановительные эквиваленты от NADH2 на FMN, а субъединица А трансформирует комплекс металл-хелатирующий агент при поглощении молекулярного кислорода, то есть выполняет роль собственно оксигеназы.

В результате двух последовательных отщеплений ацетильных концов образуется N,N1-EDDA. Метаболизм N,N1-EDDA до конца не изучен, предполагается, что он выглядит как показано на рис. 3. То есть молекула N,N1-EDDA теряет еще один ацетильный остаток. О метаболизме EDMA ничего не известно, здесь возможно два варианта: либо отщепляется последняя ацетильная группа и остается этилендиамин, либо происходит разрыв в молекуле этилендиамина с образованием глицина и аминоацетальдегида или аммиака и иминоацетальдегидацетата.

1.2.1. Бактерии, разрушающие ЭДТА

ЭДТА характеризуется высокой устойчивостью; микроорганизмы, способные разрушать это соединение, встречаются в природе очень редко. В настоящее время известно лишь четыре штамма ЭДТА-разрушающих бактерий, выделенные в чистую культуру:

1. Штамм, относящийся к роду Agrobacterium, способный разрушать комплекс Fe (III)-ЭДТА [11];

2. Штамм BNC-1, граммотрицательная бактерия, способный деградировать комплексы ЭДТА с Mg2+, Ca2+, Mn2+, Zn2+ [12];

3. Штамм DSM-9103 граммотрицательная бактерия относится к подклассу α-Proteobacteria [4], способный деградировать комплексы Mg2+-, Ca2+-, Mn2+-ЭДТА и частично хелаты с Co, Cu, Zn, Pb.;

4. Штамм LPM-410 идентифицирован как Pseudomonas sp. [13].

Характеристика штамма LPM-4

Штамм LPM-4 был выделен в лаборатории физиологии микроорганизмов ИБФМ РАН к.б.н. Чистяковой Т. И. из активного ила Пущинских очистных сооружений методом накопительной культуры [6]. Клетки неподвижны, колонии на твердой питательной среде с ЭДТА через неделю роста 0,1-0,3 см в диаметре, круглые, перламутровые с синеватым блеском. Аэроб, не обладающий запахом.

Клетки штамма имеют палочковидную форму (0,1-0,2×0,5-0,6 мкм). На среде с ЭДТА клетки могут быть одиночными или парными. Это типичная граммотрицательная бактерия (рис. 4), о чем говорит достаточно толстая клеточная стенка с волнистыми краями. Клетка содержит электронно-плотные включения (при потреблении ЭДТА), которые, как показали исследования на других штаммах, содержат Ca2+, Mg2+ и PO43- [4].

Штамм LPM-4 уникален по потребностям в питательных веществах. Установлено, что штамм способен расти только на средах, содержащих ЭДТА, и не растет на средах, содержащих глюкозу, этанол, органические кислоты в качестве единственного источника углерода и энергии и неорганические (сульфат аммония, нитрат калия) или органические (мочевина, пептон, гидролизат казеина, аминопептид, дрожжевой экстракт) источники азота [6].

Данный штамм обладает положительной реакцией на наличие оксидазы и каталазы. Температурный оптимум для роста штамма 32-34˚С. Оптимум рН=7. На жидкой питательной среде с ЭДТА идет защелачивание среды в процессе роста клеток.

Клетки штамма способны разрушать различные комплексы ЭДТА с металлами. Суспензия отмытых клеток штамма разрушала ЭДТА и комплексы Ba2+-, Mg2+-, Ca2+-, Mn2+-ЭДТА с постоянной скоростью в диапозоне от 0,310 до 486 ммоль ЭДТА/(г·ч), удельная скорость разрушения Zn-ЭДТА достигала наибольшего значения (0,137 ммоль ЭДТА/(г·ч)) в течение первых 10 часов инкубации, а затем снижалась [6].

Установлено, что штамм LPM-4 способен совместно метаболизировать ЭДТА и глюкозу. Этот процесс можно назвать кометаболизмом.

1.3. Понятие о кометаболизме

Кометаболизм – это особый случай утилизации смешанных субстратов. Кометаболизм впервые наблюдал Фостер [14] в 1962 году у бактерий, утилизирующих углеводороды. Эти бактерии могут расти на метане, как на единственном источнике углерода, то есть они являются метанотрофами. Однако, они не могут утилизировать такие алканы, как этан или пропан, в качестве единственного источника углерода. Когда бактерии росли на смеси метана, этана и пропана, клетки использовали метан, а также этан и пропан, которые окислялись до продуктов, таких как ацетальдегид, уксусная кислота, пропионовая кислота и ацетон соответственно.

Фостер предложил термин соокисление для описания подобного типа трансформации субстратов. Позднее другие исследователи наблюдали подобное явление с другими типами микробной трансформации; они включают не только окисление, но также и гидролиз, дегалогенирование и так далее, то есть термин “кометаболизм” было предложено использовать в более широком смысле.

В 1982 году Дальтон и Стирлинг предложили следующее определение кометаболизма. Кометаболизм – трансформация неростового субстрата в присутствии ростового субстрата или иного метаболизируемого соединения. Под неростовыми субстратами понимают такие, которые не обеспечивают деление клеток. Ростовой субстрат выполняет несколько функций. Во-первых, поставляет энергию для бактериального роста и процессов поддержания метаболизма нерастущих клеток. Во-вторых, поставляет восстановительные эквиваленты, которые позволяют деградировать неростовые субстраты. В-третьих, ростовые субстраты индуцируют синтез катаболических ферментов, которые обнаруживают загрязняющие соединения (поллютанты) и катализируют их трансформацию. Метаболизм неростовых субстратов не поставляет никакой энергии или восстановительных эквивалентов для микроорганизмов.

Структура трансформируемого (соокисляемого) соединения часто не имеет никакой аналогии с ростовым субстратом. В этом случае связь между процессами окисления ростового и трансформируемого (неростового) субстратов реализуется на уровне интермедиатов катаболизма источника углерода. Под этим подразумевают, что при окислении ростового субстрата генерируется энергия, необходимая для функционирования ферментов, осуществляющих окисление неростовых субстратов [14].


Страница: