Колонии организмов
Рефераты >> Биология >> Колонии организмов

Установлено, что плотностно-зависимые системы с пептидными феромонами регулируют компетентность к генетической трансформации у B. subtilis и Streptococcus pneumoniae (где активируется трансформация генов устойчивости к антибиотикам от других видов Streptococcus, вызывающих оральные инфекции), а также вирулентность Staphylococcus aureus. Интересно, что как и системы типа luxI-luxR, пептидные плотностно-зависимые системы регуляции во многих случаях функционируют у симбиотических/паразитических микроорганизмов.

Более того, макроорганизм также использует пептидные сигнальные агенты, выступающие в роли внутриорганизменных регуляторов. Например, в ответ на внедрение бактерий рода Rhizobium растение-хозяин (горох, соя и др.) образует пептид (около 10 аминокислот), который модифицирует эффект гормона ауксина на растительные клетки. А именно, изменяется концентрационная зависимость стимуляции ауксином клеточных делений. В норме (без этого пептида) максимальная ситмуляция наблюдается при ~5 мкМ ауксина, и эффект ослабляется при повышении концентрации ауксина. Однако в присутствии пептидного регулятора кривая концентрационной зависимости имеет плато вплоть до ~20 мкМ. Белковый феромон в плотностно-зависимой системе у одноклеточной эукариоты – водоросли Volvox carteri – стимулирует рост этого микроорганизма уже в концентрации около 10-16М.

По-видимому, широко распространённым явлением у микроорганизмов является аутоиндукция роста, позволяющая преодолеть состояние глубокого покоя (dormancy). Так, культура Micrococcus luteus, голодавшая в течение 3-6 месяцев, претерпевает лишь немного клеточных делений после пересева на богатую среду; далее следует остановка роста. Однако, добавление 20-30% супернатанта другой культуры, доросшей до ранней стационарной фазы на богатой среде, предотвращает остановку роста голодавшей популяции M. luteus и обеспечивает ее нормальный рост.

3. Кворум-зависимые системы с феромонами аминной (аминокислотной) природы. У миксобактерий Myxococcus xanthus, наряду с недиффундирующим фактором С (см. выше), имеется диффузный фактор А, ответственный за кворум-зависимуюинициациюагрегации клеток с последующим формированием плодовых тел (агрегация не происходит при плотности клеток не менее 3.108 в мл). Фактор А является смесью аминокислот и представляет собой продукт действия внеклеточных протеаз на поверхностные белки клеток. Комбинация фактора А и дефицита питательных веществ активирует двухкомпонентную систему генов sasS—sasR, инициирующую агрегацию клеток и формирование плодовых тел. Интересно, что входящие в состав фактора А кетогенные аминокислоты в дальнейшем утилизируются клетками через глиоксилатный шунт.

Рассмотренные выше плотностно-зависимые системы типа luxI-luxR фактически относятся к системам, базирующимся на производных аминокислоты, а именно гомосерина. Гомосерин не входит в состав белков. но служит универсальным для всех живых организмов интермедиатом в синтезе некоторых аминокислот. Мы рассмотрели ацилированные лактоны гомосерина отдельно только потому, что эта система коммуникации является классической.

Макро- и микроструктура колоний E. coli формируется под влиянием образуемых ее клетками градиентов атрактанта - аспарагиновой кислоты. Сложные орнаменты (концентрические круги, гексагональные решетки и др.) формируются при наложении двух градиентов феромона : 1)исходящего от центра колонии и 2) образуемого клетками на её периферии. Аспарагиновая кислота в то же время представляет собой эволюционно-консервативный сигнальный агент, втом числе один из нейротрансмиттеров (веществ, передающих возбуждение от нейрона к нейрону) у млекопитающих.

В этой связи интересно, что другие нейротрансмиттеры, а именно биогенные амины, также эволюционно-консервативные сигнальные молекулы, содержатся у микроорганизмов и, будучи добавленными к их культурам, оказывают ростовые и структурные эффекты на микробные колонии. Так, серотонин (5-гидрокситриптамин), нейротрансмиттер и гистогормон у высших организмов, в то же время представляет интерес как возможный агент микробный коммуникации. Это предположение базируется на данных о стимуляции агрегации клеток E. coli, Rhodospirillum rubrum и миксобактерий рода Polyspondilum добавленным серотонином. В тех же концентрациях (10-7—10-5 М) серотонин стимулирует рост микроорганизмов.

Другой нейротрансмиттер и гормон—норадреналин, также ускоряет рост патогенных энтеробактерий. У патогенных штаммов он стимулирует синтез адгезина К99 и Шига-подобных токсинов I и II. Примечательно, что норадреналин не стимулирует рост непатогенных штаммов E. coli (неопубликованные данные авторов этой статьи). Всё это подкрепляет предположение Лайта об адаптивном характере ноадреналин-зависимой стимуляции роста бактерий. Патогенные энтеробактерии используют защитную реакцию организма (интенсивный синтез норадреналина в ответ на стресс,вызванный инфекцией) ради собственного блага. Микроорганизмы содержат многие другие нейротрансмиттеры и гормоны (гистогормоны) высших животных (γ-аминомасляная кислота, β-аланин, инсулин и др.), которые участвуют как во взаимодействиях между симбиотической/паразитической микробиотой и макроорганизмом, так, по-видимому, и в межклеточной коммуникации у микроорганизмов (подробнее см. наш обзор).

Исследование роли эволюционно-консервативных аминов и аминокислот в межклеточной коммуникации микроорганизмов и во взаимодействии микробиоты и животного организма – тема научной работы, проводимой коллективом автором в настоящее время. Методом высокоэффективной жидкостной хроматографии с электродетекцией нами обнаружен серотонин у Bacillus cereus и Staphylococcus aureus (ранее он детектирован Страховской с соавт. у Enterococcus faecalis), нораденалин у всех исследованных бацилл, Proteus vulgaris, Serratia marcescens, дрожжей, грибка Penicillum chrysogenum, а дофамин – у широкого круга исследованных прокариот.

Представляет интерес также наличие у микроорганизмов белков, гомологичных рецепторам нейромедиаторов. Так, пурпурная фототрофная бактерия Rhodobacter sphaeroides содержит гомолог бензадипинового рецептора — одного из типов рецепторов к тормозному нейромедиатору γ-аминомасляной кислоте. Известно, что митохондрии эукариотических клеток – симбиотические потомки прокариот, а именно, той их подгруппы, в состав которой входит и R. sphaeroides. Поэтому исследования бактериальных рецепторов к нейромедиаторам и в целом эффектов эволюционно-консервативных нейромедиаторов в микробных системах весьма актуальны для нейрохимии мозга в связи с данными о роли митохондрий мозговых нейронов в связывании нейромедиаторов. Mитохондрии нейронов содержат рецепторы к глутамату (NMDA-подтипа). Если глутамат присутствует в высоких концентрациях, его связывание с этими митохондриальными рецепторами ведёт к массивному поступлению ионов Са 2+ внутрь митохондрий, диссипации мембранного потенциала, снижению внутриклеточной концентрации АТФ и в конечном счёте к апоптозу (см. выше). Апоптоз нейронов мозга в связи с избыточными концентрациями глутамата и других нейромедиаторов, вероятно, происходит при таких нейродегенеративных заболеваниях, как ишемический инсульт, болезни Паркинсона, Альцгкймера и Хантингтона.


Страница: