Колонии организмов
Работы 90-х годов резко усилили интерес к "эффектам кворума" в популяциях микроорганизмов. К числу описанных к настоящему времени процессов, протекающих лишь при достаточно высокой плотности популяции, принадлежат следующие явления:
· Биолюминисценция у морских бактерий (Vibrio fischeri, V. harveyi).
· Агрегация клеток миксобактерий и последующее формирование плодовых тел со спорами
· Конъюгация с переносом плазмид у Enterococcus faecalis и родственных видов, а также у клубеньковых бактерий рода Agrobacterium
· Формирование клеток-швермеров у бактерий родов Proteus и Serratia
· Синтез экзоферментов и других факторов вирулентности у растительных (Erwinia carotovora, E. hyacinthii и др.) и животных (Pseudomonas aeruginosa) патогенов.
· Образование антибиотиков у представителей рода Streptomyces и у Erwinia carotovora
· Споруляция у бацилл и актиномицетов
· Стимуляция роста стрептококков и ряда других микроорганизмов
Раскрыты механизмы многих из указанных процессов; определены факторы межклеточной коммуникации, отвечающие за плотностно-зависимые процессы. Здесь необходимо сказать несколько слов о биокоммуникации в целом (предмет особой биологической науки под названием биосемиотика). Среди изучаемых данной наукой каналов коммуникации между живыми организмами, три канала коммуникации являются наиболее эволюционно-консервативными и в полной мере функционируют уже у одноклеточных форм жизни. Речь идёт о передаче информации путём 1) непосредственного (физического) контакта между организмами; 2) выработки диффундирующих в среде химических агентов; 3) генерации тех или иных физических полей. Все три канала коммуникации, вероятно, принимают участие в "эффектах кворума".
Физический контакт между организмами. Некоторые из плотностно-зависимых процессов включают в себя стадии, контролируемые недиффундирующими химическими факторами. Они прикреплены к генерировавшей их клетке, и их восприятие рецепторами другой клетки требует непосредственного межклеточного контакта. Так, в голодающей популяции миксобактерий Myxococcus xanthus наблюдается агрегация клеток с последующим формированием плодовых тел со спорами. Процесс находится под контролем как диффундирующих, так и недиффундирующих химических факторов. Поздние его стадии, когда клеточная агрегация уже идёт в течение 6 часов и необходимо обеспечить достаточно компактную укладку клеток для формирования спор, контролируются недиффундирующим, прикреплённым к поверхности клетки белковым фактором С (продукт гена csgA). Мутанты по гену csgA не способны к согласованным клеточным движениям, необходимым для компактного расположения палочковидных клеток M. хanthus; эти мутанты не формируют и плодовых тел. Идентифицировано по крайней мере 16 генов, чья экспрессия зависит от фактора С.
Физический контакт клеток необходим также при коммуникации посредством поверхностных органелл, таких как например пили, и компонентов экзоплимерного матрикса, покрывающего отдельные клетки, их группы, всю колонию в целом. В частности, процесс агрегации и споруляции у M. xanthus зависит от пилей типа IV (гомологи пилей типа IV есть у патогенных бактерий Pseudomonas aeruginosa и Neisseria gonorhoeae, где они также обусловливают социально координированные клеточные движения), от полисахаридно-белковых фибрил и от липополисахаридного О-антигена внешнего слоя наружной мембраны. Все эти поверхностные клеточные структуры синтезируются с помощью так называемых S (social) генов, ответственных за коллективные, координированные перемещения клеток и формирование структур надклеточного уровня. Им противопоставляют также имеющиеся у миксобактерий А (adventurous) гены, позволяющие индивидуальным клеткам покидать край растущей колонии.
Своего рода промежуточное положение между недиффундирующими и свободно диффундирующими агентами коммуникации у миксобактерий занимают тяжи (trails) из биополимеров матрикса, которые отделяются от образовавшей их клетки, тем самым пролагая путь другим клеткам-"путешественницам", дающим начало дочерним колониям. Интересно, что аналогичную роль в сообществе муравьев играют так называемые следовые торибоны, маркирующие след мураьвьёв-фуражиров ("первопроходцев"). Естественно, что роль контактной (и "следовой") коммуникации в её различных вариантах не ограничивается только миксобактериальными системами. Например, пили участвуют в агрегации клеток в колониях Neisseria gonorrhoeae. У эукариотических микроорганизмов, в частности, у Dictyostellium discoideum, контактные взаимодействия участвуют в морфогенезе наряду с диффундирующими химическими агентами. Несоменную роль в этих взаимодействиях играют гликопротеины, характеризующие дальнейшую судьбу клеточных субпопуляций: клетки, дающие в дальнейшем споры, несут гликопротеин PsA, в то время как совершающая апоптоз субпопуляция (будущая ножка плодового тела) имеeт антиген MUD9.
Дистантная химическая коммуникация на службе "эффектов кворума". Тема химической коммуникации у микроорганизмов настолько широка (она была рассмотрена в более ранних авторских работах, что мы ограничимся только теми диффузными химическими агентами, чьё участие в "эффектах кворума" установлено. Речь будет идти о следующих классах соединений: 1) ацилированные лактоны гомосерина, регулирующие широкий круг плотностно-зависимых коллективных процессов у грамотрицательных бактерий; 2) пептиды, регулирующие конъюгативный плазмидный перенос у Enterococcus, развитие воздушного мицелия у Streptomyces, споруляцию у бацилл и др.; 3) аминокислоты и сходные с ними аминные соединения, регулирующие агрегацию бактериальных клеток (E. coli, Salmonella typhimurium, Myxococcus xanthus) и формирование швермеров у Proteus mirabilis.
1. Кворум-зависимые системы с лактонами гомосерина как агентами межклеточной коммуникации (системы типа "luxI-luxR"). Рассмотрим вначале сравнительно хорошо изученные бактериальные системы, использующие ацилированные лактоны гомосерина. Классическим объектом служит морская светящаяся бактерия Vibrio fischeri. Свечение является плотностно-зависимым процессом, т. е. не наблюдается в разбавленных клеточных суспензиях, например, просто в толще морской воды (плотность культуры менее 102 клеток/мл). Свечение V. fischeri реализуется лишь в концентрированных культурах V. fischeri, в том числе в природных экологических нишах этой бактерии- в светящихся органах головоногого моллюска Euprymna scolopes, где плотность популяции достигает 1010-1011 клеток/мл. Данная система, по-видимому, представляет пример взаимовыгодного межвидового сотрудничества "Моллюск, ночное животное, извлекает выгоду из того, что светящиеся бактерии делают его незаметным для хищников снизу; свечение, напоминающее лунный свет, устраняет тень, которая иначе возникала бы, если бы лунные лучи освещали моллюска сверху. А бактерия извлекает выгоду из того, что моллюск предоставляет питание и укрытие". Биохимию и генетику свечения V. fischeri исследовали поэтапно. Вначале удалось показать, что свечение культур V. fischeri, находящихся на ранней экспоненциальной стадии развития, может быть индуцировано культуральной жидкостью, отделённой от клеток V. fischeri во время стационарной фазы. Впоследствие была детально охарактеризована генетическая система "luxI – luxR", оказавшаяся типичной для большинства известных плотностно-зависимых систем грамотрицательных бактерий.