Изучение трехмерной структуры с помощью рентгеновской дифракции и реконструкции изображения
3.2 Расположение спиралей в бислое и их соединение
Ситуация, которая сложилась при изучении бактериородопсина, весьма необычна в том смысле, что при промежуточном уровне разрешения удается установить некоторые структурные детали, но этого разрешения недостаточно для однозначного определения конфигурации белка в бислое. Все попытки, которые предпринимались здесь до сих пор, скорее смогли выявить ограничения использовавшихся методов, чем выяснить принципы структурной организации мембранных белков. Применялись следующие методы.
Теоретический анализ, направленный на поиск такой конфигурации спиральных участков, при которой происходит оптимальная нейтрализация зарядов благодаря образованию ионных связей внутри бислоя, а также на оценку длины полипептидных участков, соединяющих спирали.
Нейтронное рассеяние с использованием дейтерированных аминокислот и данных об аминокислотном составе каждого спирального участка.
Улучшение разрешения в плоскости мембраны с использованием метода. реконструкции изображения и электронной дифракции.
Определение рентгеновского рассеяния до и после протеолитического расщепления N-концевого пептида с целью идентификации на карте электронной плотности остатков, расположенных на N-конце.
Исследование с помощью нейтронного рассеяния бактериородопсина, реконструированного из протеолитических фрагментов, один из которых был дейтерирован.
Нейтронное рассеяние с использованием дейтерированного ретиналя, включенного либо путем замещения, либо биосинтетически. Ретиналь был присоединен к Lys-216 в спирали G. Считается, что он расположен внутри бислоя под углом 75° по отношению к нормали, т.е. почти параллельно поверхности мембраны.
Фотохимическое сшивание с использованием фотореактивного производного ретиналя. Этот метод позволяет выявить ближние взаимодействия.
Каждый из этих подходов имеет свои ограничения, и в этом смысле они не согласуются между собой. Существует 5040 возможных способов размещения семи спиралей в семи бороздках, и до настоящего времени эти методы давали противоречивые ответы на вопрос даже о наиболее вероятном их расположении.
4. Структура поринов
Порины - это основной класс белков, обнаруженных в наружной мембране кишечных бактерий. У Е. coli и Salmonella typhimurium выявлены три порина: OmpF, OmpC и PhoE. Эти белки имеют мол. массу примерно 35 ООО и гомологичные аминокислотные последовательности. Порины экстрагируются из наружной мембраны с помощью ДСН в виде стабильных тримеров; их можно встроить в фосфолипидные бислои с образованием неспецифичных пор, способных пропускать малые гидрофильные молекулы. По-видимому, именно они придают наружной мембране бактерий свойство молекулярного сита, Позволяя питательным веществам проникать внутрь клетки, а отходам - выводиться наружу через неспецифические каналы.
Были проведены обширные структурные исследования белка OmpF, известного также под названием "матриксный порин"; в настоящее время осуществляется кристаллографический анализ, который позволит получить его структуру с высоким разрешением. Однако уже сейчас можно сделать вывод, что структура OmpF сильно отличается от структуры как бактериородопсина, так и полипептидов, образующих фотосинтетический реакционный центр. Судя по данным о первичной последовательности, в молекуле нет никаких длинных гидрофобных участков, которые можно было бы идентифицировать как трансмембранные, и в среднем в ней содержится больше полярных аминокислот, чем неполярных. Однако трехмерная электронно-микроскопическая реконструкция изображения с использованием кристаллических пластинок реконструированного порина показала, что белок пронизывает бислой, причем за пределы мембраны выходят лишь небольшие участки молекулы. Методом негативного контрастирования были выявлены каналы, образуемые тримерами. Отдельные молекулы порина образуют у внутренней поверхности каналы, которые в середине бислоя сливаются в одиночный канал, открывающийся наружу. Есть и другие данные, свидетельствующие о том, что порин, несмотря на отсутствие в его молекуле гидрофобных участков, является трансмембранным белком. Иногда этот белок выполняет роль рецептора для бактериофага, а также проявляет сродство к компонентам клеточной стенки на периплазматической стороне. Очищенный порин можно встраивать в фосфолипидные бислои с образованием потенциалчувствительных каналов.
Данные инфракрасной спектроскопии, кругового дихроизма и широкоугольной диффузионной рентгеновской дифракции свидетельствуют о том, что две трети длины молекулы образует /3-слой, а на долю а-спиралей приходится небольшая часть длины молекулы. Кроме того, эти исследования показывают, что /3-цепи антипараллельны, ориентированы перпендикулярно плоскости мембраны н имеют среднюю длину 10-12 остатков, которых достаточно для пересечения неполярной области мембраны. Способ укладки /3-цепей можно установить лишь с помощью рентгеновской дифракции. Как показывают модельные исследования, /3-цепи могут быть уложены так, что образуется /3-цилиндр, при этом полярные и заряженные аминокислотные остатки выстилают стенки наполненных водой каналов.
Все известные о структуре порина данные показывают, что гидрофобная а-спираль не является его необходимым трансмембранным элементом. Это означает, что наиболее распространенные способы предсказания структуры трансмембранных белков имеют свои ограничения, поскольку они основываются на предположении, что пересечь бислой могут только гидрофобные сегменты. Точная структура порина до сих пор неизвестна; неясно также, сходна ли она со структурой других мембранных белков. Впрочем, имеются и другие белки наружной мембраны бактерий, которые характеризуются высоким содержанием ^-структур. Один из них - белок ОтрА, который тоже является рецептором для фагов, но, вероятно, не существует в виде отдельных тримеров и не образует поры. Другой белок такого рода - LamB, являющийся рецептором бактериофага лямбда; он функционирует как специфичный канал, через который осуществляется диффузия мальтодекстринов.
Предположение о том, что необычная структура поринов связана с уникальной структурой и составом наружной мембраны бактерий, выглядит правдоподобно. Возможно, однако, что она обусловлена уникальностью способа образования больших водных каналов через бислой.