Иррациональные уравнения и неравенстваРефераты >> Математика >> Иррациональные уравнения и неравенства
· Иррациональные показательные уравнения:
а) Решить уравнение
Решение.
ОДЗ:
Пусть = t, t > 0
Сделаем обратную замену:
= 1/49, или = 7,
= ,
– (ур-ние не имеет решений) x = 3.
Ответ: 3
б) Решить уравнение
Решение.
Приведем все степени к одному основанию 2:
данное уравнение равносильно уравнению:
Ответ: 0,7
· Иррациональное уравнение, содержащее иррациональность четной степени:
Решить уравнение
Решение.
возведем обе части уравнения в квадрат
3x – 5 – 2
2x – 2 = 2
x –1 =
x Проверка:
x x = 3,
4x 1 = 1.
x = 1,75 Ответ: 3.
· Иррациональное уравнение, содержащее иррациональность нечетной степени:
Решить уравнение
Решение.
возведем обе части уравнения в куб
но , значит:
возведем обе части уравнения в куб
(25 + x)(3 – x) = 27,
Ответ: –24; 2.
· Иррациональные уравнения, которые решаются заменой:
а) Решить уравнение
Решение.
Пусть = t, тогда = , где t > 0
t –
Сделаем обратную замену:
= 2, возведем обе части в квадрат
Проверка: x = 2,5
Ответ: 2,5.
б) Решить уравнение
Решение.
Пусть = t, значит = , где t > 0
t+ t – 6 = 0,
Сделаем обратную замену:
= 2, возведем обе части уравнения в четвертую степень
x + 8 = 16, Проверка:
x = 8, x = 2,
x = 2. 6 = 6
Ответ: 2.
в) Решить уравнение
Решение.
Пусть = t, где t > 0
Сделаем обратную замену:
= 2, возведем обе части уравнения в квадрат
Проверка:
,
Ответ: –5; 2.
Решение сложных иррациональных уравнений:
· Иррациональное уравнение, содержащее двойную иррациональность:
Решить уравнение
Решение.
возведем обе части уравнения в куб
возведем обе части уравнения в квадрат
Пусть = t
t 2– 11t + 10 = 0,
Сделаем обратную замену: Проверка:
= 10, или = 1, x = ,