Иррациональные уравнения и неравенстваРефераты >> Математика >> Иррациональные уравнения и неравенства
Содержание.
I. Введение
II. Основные правила
III. Иррациональные уравнения:
· Решение иррациональных уравнений стандартного вида.
· Решение иррациональных уравнений смешанного вида.
· Решение сложных иррациональных уравнений.
IV. Иррациональные неравенства:
· Решение иррациональных неравенств стандартного вида.
· Решение нестандартных иррациональных неравенств.
· Решение иррациональных неравенств смешанного вида.
V. Вывод
VI. Список литературы
I. Введение
Я, Торосян Левон, ученик 11 «В» класса, выполнил реферат по теме: «Иррациональные уравнения и неравенства».
Особенностью моей работы является то, что в школьном курсе на решение иррациональных уравнений отводится очень мало времени, а ВУЗовские задания вообще не решаются. Решение иррациональных неравенств в школьном курсе не рассматри- вают, а на вступительных экзаменах эти задания часто дают.
Я самостоятельно изучил правила решения иррациональных уравнений и неравенств.
В реферате показаны решения как иррациональных уравнений и неравенств стандартного типа, так и повышенной сложности. Поэтому реферат можно использовать как учебное пособие для подготовки в ВУЗ, также рефератом можно пользоваться при изучении этой темы на факультативных занятиях.
II. Иррациональные уравнения
Иррациональным называется уравнение, в котором переменная содержится под знаком корня.
Решаются такие уравнения возведением обеих частей в степень. При возведении в четную степень возможно расширение области определения заданного уравнения. Поэтому при решении таких иррациональных уравнений обязательны проверка или нахождение области допустимых значений уравнений. При возведении в нечетную степень обеих частей иррационального уравнения область определения не меняется.
Иррациональные уравнения стандартного вида можно решить пользуясь следующим правилом:
Решение иррациональных уравнений стандартного вида:
а) Решить уравнение = x – 2,
Решение.
= x – 2,
2x – 1 = x2 – 4x + 4, Проверка:
x2 – 6x + 5 = 0, х = 5, = 5 – 2,
x1 = 5, 3 = 3
x2 = 1 – постор. корень х = 1, 1 – 2 ,
Ответ: 5 пост. к. 1 -1.
б) Решить уравнение = х + 4,
Решение.
= х + 4,
Ответ: -1
в) Решить уравнение х – 1 =
Решение.
х – 1 =
х3 – 3х2 + 3х – 1 = х2 – х – 1,
х3 – 4х2 + 4х = 0,
х(х2 – 4х + 4) = 0,
х = 0 или х2 – 4х + 4 = 0,
(х – 2)2 = 0,
х = 2
Ответ: 0; 2.
г) Решить уравнение х – + 4 = 0,
Решение.
х – + 4 = 0,
х + 4 = , Проверка:
х2 + 8х + 16 = 25х – 50, х = 11, 11 – + 4 = 0,
х2 – 17х + 66 = 0, 0 = 0
х1 = 11, х = 6, 6 – + 4 = 0,
х2 = 6. 0 = 0.
Ответ: 6; 11.
Решение иррациональных уравнений смешанного вида:
· Иррациональные уравнения, содержащие знак модуля:
а) Решить уравнение =
Решение.
= , – +
x
Учитывая ноль подкоренного выражения, данное уравнение равносильно двум системам:
или
Ответ:
б) Решить уравнение
Решение.
, – +
x
Учитывая ноль подкоренного выражения, данное уравнение равносильно двум системам:
или
Ответ: .