Логика. Формальная или диалектическая?
Рефераты >> Логика >> Логика. Формальная или диалектическая?

Мы никогда не выйдем из этого круговращения нашего вопроса и ответа математика, если полностью доверимся только доказательству математика. Еще ни один математик не задавался этим вопросом, для него и так "легко видеть".

Если математику "легко видеть" с2 = а2 + b2, то пусть нам ука­жет, объяснит откуда у него в доказательстве вынырнуло равенство квадратов М'К'О'P' и МКОР, и, вообще, какова природа этих квадра­тов. "Кстати. Гегель неоднократно подсмеивался . над словом (и понятием) еrklaren, объяснение, должно быть противопологая мета­физическому решению раз и навсегда ("объяснили"!!) вечный процесс познания глубже и глубже"[9.115].

Ведь ни в условии, ни в выводе математик нам не указывает на неведомо откуда взявшее равенство квадратов М'К'О'Р' и МКОР, тем более о природе этих квадратов. Равенство этих квадратов в дока­зательстве математика вынырнуло ниоткуда, так, мимоходом, вдруг и невзначай, мгновенно, раньше условия и вывода.

Чудо!

И все же как, откуда явилось чудное равенство?

А какова природа теоремы Пифагора?

"Так называемая теорема Пифагора была известна не только для частных случаев, но и в полной общности"[12.43].

Выходит, Пифагор заранее знал вывод, он исходит из вывода, а не идет к нему от неизвестного.

Тогда в чем сущность гения Пифагора?

Как Пифагор шел к своему открытию и какова сущность этого от­крытия?

Посмотрите на разные квадраты с2, а2 и b2 в их разрозненном виде. Мож­но ли при этом видеть, уверенно утверждать, что с2 = а2 + b2 ?

Нет!

Но ведь из практики наверняка известно, что с2 = а2 + b2!!

Категорический ответ Аристотеля:

"Невозможно, чтобы противоположности были в одно и то же время присущи одному и тому же ."[8.125].

Тогда выходит, что Пифагор взялся за невозможное.

Так как же Пифагору удалось преодолеть невозможное, схватить единое во многом и многое в одном?

Если уже из практики было известно, что с2 = а2 + b2, то площадь квадрата построенного на гипотенузе (с), должна совпасть, слить­ся воедино с суммой площадей построенными на катетах (а и b ).

Чтобы это было более наглядно, мы все эти квадраты (черт.1) вырежем, отсоединим друг от друга, а затем непосредственно нало­жим их друг на друга, так как "вообще две какие-нибудь геометри­ческие фигуры считаются равными, если они при наложении могут быть вполне совмещены"[13.48].

И что мы увидим при этом?

Все, что угодно, только не равенство, не совмещение, не сли­яние этих квадратов, т.е. не увидим, что с2 = а2 + b2 .

Возможно ли вообще соединить, наложить друг на друга эти (вы­резанные) такие различные квадраты непосредственно, чтобы они слились воедино?

Нет!

Почему?

" .В таком случае было бы необходимо, чтобы два тела занима­ли одно и то же место ."[8.106], а "находиться в одном и том же месте два тела не могут ."[8.321].

Но ведь с2 = а2 + b2 !

Они, эти квадраты, должны совпасть!

Как же увидеть, как же осуществить непосредственное слияние, единство различных квадратов!?

Вместо двух квадратов МКОР и М'К'О'Р' начертим и вырежем (из любого плоского материала) один квадрат МКОР. Затем поочередно на него (или в него, если это ниша) наложим квадраты, построенные на сторонах катетов, уберем, а затем вместо них наложим квадрат, по­строенный на стороне гипотенузы.

Мы получили то же самое, что и математики, т. е. дважды одно и то же, только математики шли от двух квадратов, неведомо откуда взявших (МКОР и М'К'О'Р'), к их (и тоже неожиданному) равенству, мы же, наоборот, шли от одного квадрата (МКОР) к двум (МКОР и М'К'О'Р') равным.

Фактически здесь не играет роли, как мы идем, от двух квадра­тов (МКОР и М'К'О'Р') как математики, или от одного квадрата (МКОР), но дважды в него (или на него) вкладываем поочередно ква­драты: с2 и затем а2 + b2 , и они нам дают одно и то же (а именно четыре равных треугольника аbс).

Но .

Вырежьте (из бумаги или картона, или из любого плоского мате­риала) квадраты a2 , b2, с2, МКОР и четыре равных треугольника, равных треугольнику аbс, продемонстрируйте перед аудиторией, вкладывая поочередно в (или на) квадрат МКОР квадраты а2 + b2, за­тем квадрат с2 , соответственно ситуации, меняя места расположения четырех равных треугольников в квадрате МКОР. Заметно большее чи­сло человек увидит, схватит, что с2 = а2 + b2, чем когда мы доказы­ваем теорему Пифагора, идя от двух квадратов МКОР и М'К'О'Р'.

Мы действительно добились большей ясности, очевидности в до­казательстве теоремы Пифагора, идя сразу от единства (одного ква­драта МКОР) к его раздвоению (МКОР и М'К'О'Р'), нежели от двух к одному.

Но смогли ли мы при этом в действительности, или, точнее, не­посредственно соединить, слить воедино квадраты а2 + b2 и с2 ?

Нет!

Всякий раз, при демонстрации доказательства теоремы Пифагора, мы вынуждены были необходимостью д в а ж д ы пользоваться квад­ратом МКОР, первый раз накладывая на него сумму квадратов а2 + b2 , второй раз накладывая на него квадрат с2.

Почему д в а ж д ы?

Потому что "невозможно, чтобы два тела (вырезанные квадраты а2 + b2 и с2 . Авт.) находились в одно и то же время в одном и том же месте"[11.409].

Тогда как испытуемые (все мы!) убеждаются в том, что квадрат c2 сливается с суммой квадратов а2 + b2, если нет возможности о д ­н о в р е м е н н о поместить "в одном и том же месте . два те­ла"[20.409], как бы мы не увеличивали скорость поочередного нак­ладывания квадратов с2 и а2 + b2 на квадрат МКОР?

Как!?

Мы все это (связь, взаимопереход разностей, противоположностей, прыжок от одного к другому, скачок) проделываем м ы с л е н н о, в голове!

Чувственно, непосредственно в "пространстве и времен(и)"[3.280] мы действительно не в силах схватить скачка, прыжка от одного к другому, п е р е х о д а ("а э т о с а м о е в а ж н о е" [9. 128]) противоположностей, их единства, слияния, потому, что он, диалектический скачок, проистекает м г н о в е н н о, незаметно, неуловимо чувствами, но если мы схватили, поняли суть вещей, их логику (а ""сущность времени и пространства есть движение .""[9. 231]), значит мы совершили как-то этот диалектический скачок, значит мы позволили ""перейти границу""[9.231] категорического запрета формальной логики, но незаметно для себя и других. "Они не сознают этого, но они это делают"[11.84]. Человек не осознает, не улавливает сущности самой по себе мысли. "В старой логике пе­рехода нет, развития (понятий и мышления), нет "в н у т р е н ­н е й, н е о б х о д и м о й с в я- з и" всех частей и "Ubergan­g'a"(- "перехода". Ред.) одних в другие"[9.88]. ""Оно (фор­мальное мышление. Ред.) составляет для себя об этом определённое осново­положение, что противоречие немыслемо; на самом же деле мышление противоречия есть существенный момент понятия. Формальное мышле­ние фактически и мыслит противоречие, но сейчас же закрывает на него глаза и в упомянутом высказывании" (в изречении, что проти­воречие не мыслемо) "переходит от него лишь к абстрактному отри­цанию""[9.209].


Страница: