Электронография
Рефераты >> Химия >> Электронография

Содержание

Введение

Краткие сведенья о дифракции частиц

Газовая электронография

Современная газовая электронография

Методика эксперимента.

Микрофотометрирование.

Длина волны электронов.

Расшифровка электронограмм.

Пример С6Н5РСl2.

Заключение

Литература

Введение

Электронография (от электрон и .графия), метод изучения структуры вещества, основанный на рассеянии ускоренных электронов исследуемым образцом. Применяется для изучения атомной структуры кристаллов, аморфных тел и жидкостей, молекул в газах и парах. Физическая основа Электронографии - дифракция электронов; при прохождении через вещество электроны, обладающие волновыми свойствами, взаимодействуют с атомами, в результате чего образуются отдельные дифрагированные пучки. Интенсивности и пространственное распределение этих пучков находятся в строгом соответствии с атомной структурой образца, размерами и ориентацией отдельных кристалликов и другими структурными параметрами. Рассеяние электронов в веществе определяется электростатическим потенциалом атомов, максимумы которого в кристалле отвечают положениям атомных ядер.

Электронографические исследования проводятся в специальных приборах - электронографах и электронных микроскопах; в условиях вакуума в них электроны ускоряются электрическим полем, фокусируются в узкий светосильный пучок, а образующиеся после прохождения через образец пучки либо фотографируются (электронограммы), либо регистрируются фотоэлектрическим устройством. В зависимости от величины электрического напряжения, ускоряющего электроны, различают дифракцию быстрых электронов (напряжение от 30-50 кэв до 1000 кэв и более) и дифракцию медленных электронов (напряжение от нескольких в до сотен в).

Электронография принадлежит к дифракционным структурным методам (наряду с рентгеновским структурным анализом и нейтронографией) и обладает рядом особенностей. Благодаря несравнимо более сильному взаимодействию электронов с веществом, а также возможности создания светосильного пучка в электронографе, экспозиция для получения электронограмм обычно составляет около секунды, что позволяет исследовать структурные превращения, кристаллизацию и так далее. С другой стороны, сильное взаимодействие электронов с веществом ограничивает допустимую толщину просвечиваемых образцов десятыми долями мкм (при напряжении 1000-2000 кэв максимальная толщина несколько мкм).

Электронография позволила изучать атомные структуры огромного числа веществ, существующих лишь в мелкокристаллическом состоянии. Она обладает также преимуществом перед рентгеновским структурным анализом в определении положения лёгких атомов в присутствии тяжёлых (методам нейтронографии доступны такие исследования, но лишь для кристаллов значительно больших размеров, чем для исследуемых в электронографии).

Вид получаемых электронограмм зависит от характера исследуемых объектов. Электронограммы от плёнок, состоящих из кристалликов с достаточно точной взаимной ориентацией или тонких монокристаллических пластинок, образованы точками или пятнами (рефлексами) с правильным взаимным расположением. При частичной ориентации кристалликов в плёнках по определённому закону (текстуры) получаются отражения в виде дуг. Электронограммы от образцов, состоящих из беспорядочно расположенных кристалликов, образованы аналогично дебаеграммам равномерно зачернёнными окружностями, а при съёмке на движущуюся фотопластинку (кинематическая съёмка) – параллельными линиями. Перечисленные типы электронограмм получаются в результате упругого, преимущественно однократного, рассеяния (без обмена энергией с кристаллом). При многократном неупругом рассеянии возникают вторичные дифракционные картины от дифрагированных пучков. Подобные электронограммы называются кикучи-электронограммами (по имени получившего их впервые японского физика). Электронограммы от молекул газа содержат небольшое число диффузных ореолов.

В основе определения элементарной ячейки кристаллической структуры и её симметрии лежит измерение расположения рефлексов на электронограммах. Межплоскостное расстояние d в кристалле определяется из соотношения:

d = Ll/r,

где L - расстояние от рассеивающего образца до фотопластинки, l - дебройлевская длина волны электрона, определяемая его энергией, r - расстояние от рефлекса до центрального пятна, создаваемого нерассеянными электронами. Методы расчёта атомной структуры кристаллов в электронографии аналогичны применяемым в рентгеновском структурном анализе (изменяются лишь некоторые коэффициенты). Измерение интенсивностей рефлексов позволяет определить структурные амплитуды |Fhkl|. Распределение электростатического потенциала j(x, у, z) кристалла представляется в виде ряда Фурье. Максимальные значения j(x, у, z) соответствуют положениям атомов внутри элементарной ячейки кристалла. Таким образом, расчёт значений j(x, у, z), который обычно осуществляется ЭВМ, позволяет установить координаты х, у, z атомов, расстояния между ними и другие характеристики.

Методами электронографии были определены многие неизвестные атомные структуры, уточнены и дополнены рентгеноструктурные данные для большого числа веществ, в том числе множество цепных и циклических углеводородов, в которых впервые были локализованы атомы водорода, молекулы нитрилов переходных металлов (Fe, Cr, Ni, W), обширный класс окислов ниобия, ванадия и тантала с локализацией атомов N и О соответственно, а также 2- и 3-компонентных полупроводниковых соединений, глинистых минералов и слоистых структур. При помощи электронографии можно также изучать строение дефектных структур. В комплексе с электронной микроскопией электронография позволяет изучать степень совершенства структуры тонких кристаллических плёнок, используемых в различных областях современной техники. Для процессов эпитаксии существенным является контроль степени совершенства поверхности подложки до нанесения плёнок, который выполняется с помощью кикучи-электронограмм: даже незначительные нарушения её структуры приводят к размытию кикучи-линий.

Интенсивность каждой точки этих электронограмм определяется как молекулой в целом, так и входящими в неё атомами. Для структурных исследований важна молекулярная составляющая, атомную же составляющую рассматривают как фон и измеряют отношение молекулярной интенсивности к общей интенсивности в каждой точке электронограммы. Эти данные позволяют определять структуры молекул с числом атомов до 10-20, а также характер их тепловых колебаний в широком интервале температур. Таким путём изучено строение многих органических молекул, структуры молекул галогенидов, окислов и других соединений. Аналогичным методом проводят анализ атомной структуры ближнего порядка (см. Дальний порядок и ближний порядок) в аморфных телах, стеклах и жидкостях.

При использовании медленных электронов их дифракция сопровождается эффектом Оже и другими явлениями, возникающими вследствие сильного взаимодействия медленных электронов с атомами. Недостаточное развитие теории и сложность эксперимента затрудняют однозначную интерпретацию дифракционных картин. Применение этого метода целесообразно в сочетании с масс- и Оже-спектроскопией для исследования атомной структуры адсорбированных слоев, например газов, и поверхностей кристаллов на глубину нескольких атомных слоев (на 10-30 ). Эти исследования позволяют изучать явления адсорбции, самые начальные стадии кристаллизации и т. д.


Страница: