Топливные элементы
В соответствии с этими требованиями принято следующее деление ТЭ по электролиту: элементы с кислотой, щелочью, расплавленными карбонатами и твердыми окислами.
Наибольшее распространение получили низкотемпературные (рабочая температура ниже 423 К) ТЭ с жидким электролитом. В качестве электролита используются концентрированные растворы кислот и щелочей. Топливом в низкотемпературных ТЭ обычно служит водород, окислителем – кислород или воздух.
В щелочных электролитах, как правило, предпочитают применять гидроокись калия, а не натрия. Это вызвано меньшей эффективностью кислородных электродов в растворах NaOH по крайней мере при обычных условиях работы и более низкой удельной проводимости раствора NaOH. В кислых электролитах проблема коррозии металлов более острая, чем в щелочных электролитах. Имеется мало материалов, стойких к агрессивному действию этих кислот в сильной окислительной среде на кислородном электроде. Помимо газообразных реагентов в низкотемпературных ТЭ применяется жидкое топливо (гидразин, спирт) и окислитель (перекись водорода). Жидкий электролит находится в свободном состоянии либо пропитывает поры мелкопористого электролитоносителя, обычно изготовленного из асбеста. В этом случае электролит удерживается в неэлектропроводящей пористой матрице капиллярными силами. Основные требования к матрице: высокая пористость и малый размер пор, хорошая смачиваемость электролитом, достаточная механическая прочность, способность выдерживать соответствующие интервалы температур, высокое удельное электрическое сопротивление, химическая инертность по отношению к электролиту. Функции переноса ионов (ОН-, Н+) при работе низкотемпературного ТЭ могут быть осуществлены при помощи твердого электролита – ионообменных мембран. Применение электролитоносителей и ионообменных мембран позволяет существенно упростить конструкцию ТЭ и повысить их удельные массогабаритные характеристики. Однако в подобных системах возникают серьезные трудности, связанные с обеспечением материального баланса при длительной работе.
В низкотемпературных ТЭ для активации электродов используют катализаторы и дефицитные материалы. При увеличении рабочих температур возможно значительное снижение необходимого количества катализатора, а также применение для активации менее дефицитных материалов.
В низкотемпературных элементах не удается использовать природные вида топлива: нефть и продукты ее переработки, уголь и природный газ (метан) из-за высокой поляризации. Проблема использования этих видов топлива решается по двум направлениям: путем применения высокотемпературных элементов и путем предварительной химической обработки топлива с целью получения электрохимически активных веществ.
Для развития современных представлений о работе ТЭ большое значение имели исследования Ф. Бэкона в области среднетемпературных (423-523 К) водородно-кислородных –щелочных систем. Однако в настоящее время работы в этом направлении практически прекращены из-за сложных коррозионных и конструктивных проблем и сравнительно низких удельных характеристик среднетемпературных ЭХГ. В то же время продолжаются интенсивные исследования среднетемпературных ТЭ с кислым электролитом (серная, фосфорная кислоты), поскольку в них отсутствует проблема карбонизации электролита и могут быть использованы конвертированные водород и кислород воздуха.
Принципиальным преимуществом высокотемпературных ТЭ (рабочая температура более 573 К) является возможность окисления в них с приемлемыми скоростями дешевого топлива (углеводородов, спиртов, аммиака и т. п.) и кислорода воздуха. В качестве электролита в таких ТЭ используются расплавы карбонатов, а также смесь окислов циркония, кальция и иттрия в твердом состоянии. К сожалению, эти системы пока не поддаются технической реализации из-за высоких скоростей коррозии, трудностей с подбором материалов для изготовления электродов, конструктивных узлов, созданием электролита со стабильными характеристиками, отсутствия способа соединения твердых деталей, испытывающих термическое расширение.
Выбор топлива (восстановителя) и окислителя для ТЭ определяется типом и назначением ТЭ и предъявляемыми к нему требованиями. ЭДС, удельная мощность и энергия ТЭ возрастает с увеличением потенциала окислителя в сторону положительных значений и потенциала восстановителя в сторону отрицательных значений. Удельная энергия ТЭ возрастает с увеличением удельной емкости (количества энергии, высвобождаемой при электрохимическом превращении единицы массы вещества) окислителя и восстановителя. Удельная мощность ТЭ в значительной степени зависит от электрохимической активности восстановителя и окислителя, т. е. скоростей их электрохимического превращения на электродах. Целесообразность использования того или иного реагента в ТЭ также зависит от стоимости и доступности этого реагента.
При разработке электродов для различных типов ТЭ необходимо учитывать особенности их эксплуатации. Как уже отмечалось, электродные процессы при работе ТЭ включают: диффузию реагирующих частиц к месту реакции; адсорбцию реагирующих частиц; электронный переход; промежуточные химические реакции; отвод продуктов реакции. Помимо обеспечения эффективного протекания всех упомянутых стадий электрод должен быть стабильным при длительной работе и хранении, обладать механическими свойствами, позволяющими использовать его в соответствующей конструкции.
Другие типы ТЭ.
Могут быть использованы и твердые электролиты – вещества, обладающие ионной проводимостью, имеющие ионное строение. Перемещение ионов в них происходит из-за имеющихся в кристалле участков с минимумом потенциальной энергии (потенциальных ям), куда могут попадать колеблющиеся около своих положений равновесия ионы. В освободившийся узел кристаллической решетки (дефект) может перейти другой ион, соответственно ион передвинется на его место. С ростом температуры вероятность перехода ионов и дефектов в кристаллической решетке растет. При наложении электрического поля хаотическое движение ионов и дефектов принимает направленный характер: ионы и дефекты движутся в разных направлениях.
Электролиты в таких ТЭ обладают приемлемой электрической проводимостью лишь при 1200 К и выше, поэтому ТЭ с твердыми электролитами работают обычно при 1200-1300 К. В высокотемпературном ТЭ в качестве горючего может применяться не только водород, но и углеводороды, например метан или пропан.
Эффективное применение ТЭ.
В настоящее время принципиально доказана возможность непосредственного превращения некоторых видов топлива в ТЭ и их химической энергии в электрическую с практическим КПД до 75-90%. Но возникает обратная задача: окисляя на аноде какое – либо органическое вещество, например тот же углеводород или неорганические соединения, получать не только электроэнергию во внешней цепи, но и продукт, представляющий самостоятельную ценность. Таким путем можно получать различные органические и неорганические соединения не только без затрат электрической энергии, но даже с попутным получением ее. О принципиальной возможности решения этой проблемы свидетельствует простейший пример работы ТЭ на основе водорода и кислорода. При работе такого элемента, как мы видели, продуктом реакции, в результате которых во внешней цепи ТЭ образуется электрический ток, является вода. В некоторых случаях, например в условиях космических полетов, этот процесс может оказаться исключительно полезным, так как наряду с электрической энергией, необходимой для питания систем корабля, можно непрерывно получать пригодную для питья воду. Исследования топливных элементов системы «Джеминай» в США, предназначенных для космических кораблей, показали, что при мощности элемента 2 квт будет образовываться 0,453 кг воды на 1 квт×ч выработанной электроэнергии.