Топливные элементы
Рефераты >> Химия >> Топливные элементы

Катализаторы ТЭ.

Для создания совершенных электродов очень важна их каталитическая активность. В частности, для получения обратимого водородного потенциала пригодны только металлы, которые могут хемосорбировать водород. Этой способностью обладают металлы с незаполненным d-уровнем электронной оболочки, следовательно, прежде всего переходные металлы VIII группы.

По каталитической активности окисления водорода в растворе NaOH при температуре 300 К металлы VIII и IA групп можно расположить в следующий ряд:

Au<Ag<Cu<Fe<Co<Ni<Pd<Pt<Ir<Rh<Os<Ru

При обычной температуре на платиновых металлах, в особенности в тонко раздробленной форме (платиновая чернь, палладиевая чернь), обратимый водородный потенциал устанавливается во всей области значений pH, а в щелочных растворах – также на специально обработанном никеле (никель Ренея). При повышенных температурах (323 К) достаточна уже активность простого никеля или железа.

Для всех указанных систем металл-водород общим является кинетическое торможение достижения равновесия при температуре ниже 473 К. Однозначная причина этого заключается в замедленном переходе водорода через металлическую поверхность. Давно известный способ улучшения заключается в покрытии поверхности компактного палладиевого образца палладиевой чернью, которая ускоряет поглощение водорода. Электрохимическое поведение кислорода в водных растворах на электродах из платины, серебра или угле значительно сложнее, чем других газов, например, водорода. Потенциал покоя кислородного электрода во всей области значений pH устанавливается очень медленно и плохо воспроизводим. Как правило, он устанавливается более чем на 100мВ ниже теоретического кислородного потенциала. Причина такого поведения заключается в большой энергии связи кислородной молекулы. Разрушить молекулярную связь при температуре 323 К удается лишь окольным путем через образования перекиси водорода Н2О2. Протекание реакции еще больше усложняется из-за появления радикалов НО2- и ОН-. Катализаторы для выделения и восстановления кислорода изучены еще не так основательно, как соответствующие катализаторы для водорода. Во всей области рН пригодны металлы платиновой группы и хром. В щелочах оказываются пригодными наряду с серебром и различными сортами угля также железо, кобальт и никель. Использование серебра и платины объясняется хорошими каталитическими свойствами этих металлов в отношении разложения перекиси водорода.

По каталитической активности восстановления кислорода предлагают следующую последовательность:

графит<Cu<Fe<Pt<Ag<уголь<Ni

Металл-катализатор целесообразно использовать нанесенным в тонкодисперсном виде на какой-нибудь пористый носитель (например, уголь).

В высокотемпературных ТЭ для окисления СО применяется двухскелетный электрод на основе вольфрама или молибдена. В ТЭ с расплавленными электролитами материалами для электродов служат металлы семейства железа и платиновой группы, серебро, окись цинка, окись меди, смесь окиси никеля и лития.

Для кислородного электрода высокотемпературных ТЭ можно использовать жаростойкие материалы: никель, окись никеля, содержащая 1-2% лития, нержавеющая сталь и серебро.

К катализатору предъявляются следующие основные требования: слабая адсорбция реагента; низкая энергия активации, следствием чего является высокая плотность тока обмена; большая удельная поверхность, т.е. малый размер частиц; электронная проводимость; коррозионная стойкость; малый расход катализатора для обеспечения низкой стоимости при высокой эффективности.

Для катализаторного материала большинство из этих материалов являются и частично противоречивыми.

Электрохимические генераторы.

Проблема создания ТЭ достаточно сложна. Кроме создания ТЭ имеются определенные инженерные задачи разработки всей энергетической установки. ЭДС одного элемента недостаточна для питания энергией тех или иных устройств, поэтому несколько элементов соединяются друг с другом, образуя батарею элементов. Для обеспечения непрерывной работы батареи элементов необходимы устройства для хранения и подвода в элемент топлива и окислителя, вывода продуктов реакции из элемента.

Система, состоящая из батареи топливных элементов, устройств для хранения и подвода топлива и окислителя, вывода из элементов продуктов реакции, поддержания и регулирования температуры и напряжения, получила название электрохимического генератора или ЭХГ.

Поскольку ЭХГ могут вырабатывать энергию по мере подвода окислителя и восстановителя, необходимо иметь систему подачи реагентов. Топливо и окислитель перед поступлением в батарею ТЭ могут подвергаться обработке, включающей очистку, превращение в электрохимически активные реагенты и т. п.

В результате электрохимических процессов в ТЭ образуются продукты реакции, которые могут изменять состав электролита, влиять на активность электродов, разбавлять реагенты в электродных камерах. Для обеспечения стабильной работы элемента необходима непрерывная система отвода реагентов, которая может включать систему контроля состава электролита или характеристик элементов, на которые влияют продукты реакции. Система отвода продуктов реакции может изменяться в зависимости от типа элементов и вида продуктов реакции. Система отвода продуктов реакции может изменяться в зависимости от типа элементов и вида продуктов реакции. Т.к. ηполн ТЭ ниже 1, то при его работе выделяется теплота, которую необходимо отводить. Количество теплоты, выделяемой в ТЭ, растет с увеличением силы тока, и соответственно система отвода теплоты должна обеспечивать изменение скорости отвода теплоты с изменением силы тока элемента. Отвод теплоты из батареи элементов может быть осуществлен различными способами (циркуляцией электролита, циркуляцией реагента и т. д.) и решается применительно к типу ЭХГ.

Наиболее разработаны водородно-кислородные и гидразиновые ЭХГ.

Классификация ТЭ.

В связи с большим разнообразием ТЭ пока нет их единой классификации. Можно классифицировать ТЭ по различным признакам: по принципу использования реагентов; по виду топлива и окислителя; по условиям работы ТЭ (температура и давление).

По принципу использования реагентов ТЭ подразделяют на первичные и вторичные. В первичных элементах топливо и окислитель вводятся непосредственно в ТЭ и превращаются в продукты реакции, которые затем выводятся из ТЭ. Во вторичные ТЭ вводятся не исходные ТЭ, а продукты их переработки, например водород, полученный при конверсии метана. Ко вторичным ТЭ относятся и регенеративные. В регенеративных ТЭ продукты реакции подвергаются регенерации на восстановитель и окислитель, которые затем снова направляются в ТЭ.

Название элементы получают обычно по виду окислителя или восстановителя, например водородно-кислородные, воздушно-метанольные, перекисно-водородно-гидразиновые.

По рабочей температуре ТЭ классифицируются на низкотемпературные, среднетемпературные и высокотемпературные.

Рабочая температура элемента выбирается в зависимости от свойств выбранного электролита. К электролиту предъявляют следующие требования: высокая ионная проводимость; отсутствие электронной проводимости; химическая стойкость; наличие водород- или кислородсодержащих ионов.


Страница: