Топливные элементы
Согласно первому началу термодинамики полезная внешняя работа, которая может быть произведена телом при изобарном переходе некоторой системы из состояния 1 в состояние 2, определяется формулой
A = Q1-2 + H1 – H2 (6)
где Q1-2 – теплота, подведенная в процессе 1-2; Н – энтальпия.
Химические реакции чаще всего рассматриваются как изотермические, ибо в этом случае возможно провести химическую реакцию обратимо, используя какой-либо единственный источник тепла с температурой Т (в частном случае окружающую среду с температурой Т0).
Для такого изобарно-изотермического обратимого процесса полезная работа окажется максимальной, а уравнение (6) примет вид
А = Т(S2 – S1) – (H2 – H1) = -DG, (7)
где DG=G2 – G1, G – энергия Гиббса системы.
При необратимом процессе, осуществляемом между начальными и конечными состояниями 1 и 2, полезная внешняя работа меньше максимальной на положительную величину Т0DS, равную произведению абсолютной температуры окружающей среды Т0 на прирост энтропии всей системы (производящего работу тела и окружающей среды).
Поскольку работа в ТЭ проявляется в виде электрической работы, то ее можно записать в виде произведения ЭДС (равновесного напряжения) на количество прошедшего через цепь электричества
А = Eqэ. (8)
По закону Фарадея при электрохимическом превращении 1 грамм-эквивалента вещества через систему протекает один Фарадей электричества, т.е. количество электричества, отнесенное к 1 грамм-молю реагирующего вещества, равно
qэ = zF, (9)
где F = 96500 А×с/(г×экв) = 26,8 А×ч/(г×экв) – число Фарадея, z- число электронов, участвующих при электрохимическом превращении одной молекулы вещества. Значение ЭДС обратимого топливного элемента можно записать
(10)
где DН – энтальпия реакции, DS – энтропия реакции, Т – температура, а значение максимальной полезной работы реакции при замене в выражении для G энтропии S уравнением
и
(11)
Это уравнение известно как уравнение Гиббса-Гельмгольца. Так как при постоянных р и Т DG=-Amax и DH=-Qp – тепловому эффекту реакции, происходящей в ТЭ, то уравнение (9) может быть представлено
,
а выражение для ЭДС
Второй член правой части равен теплоте, поглощаемой (выделяемой) при работе ТЭ (эта величина отнюдь не равна Qp). В зависимости от знака , т.е. от характера реакции, возможны три вида ТЭ:
а) работающие с выделением теплоты во внешнюю среду DS>0, E>;
б) без выделения или поглощения теплоты (адиабатический режим) DS=0, E=;
в) с поглощением теплоты из внешней среды DS<0, E<. Это уравнение представляет собой математическое выражение двух основных законов термодинамики и является весьма важным для расчетов, связанных с химическим равновесием.
При сжигании топлива в современных тепловых электростанциях, работающих по схеме: паровой котел à турбина à электрогенератор, суммарный коэффициент полезного действия (КПД) едва достигает 20%. Окисление топлива в гальваническом элементе может быть проведено с КПД близким к 100%. Максимальный коэффициент полезного действия
hмакс = (12)
Поскольку энтропия может иметь как положительное, так и отрицательное значение, в принципе hмакс может быть даже более единицы (>100%). В этом случае топливный элемент будет работать охлаждаясь и используя тепло окружающей среды. Максимальный КПД соответствует полному использованию веществ, вступающих в реакцию в согласии с законом Фарадея и теоретической ЭДС элемента (5).
Так как энтропия газообразных веществ обычно выше энтропии жидких и твердых веществ, то основной вклад в энтропию реакции вносят газообразные реагенты и продукты реакции. Можно в первом приближении оценить знак ∆S реакции по мольному балансу газов продуктов реакции и исходных веществ.
Как известно на практике элементы отдают во внешнюю цепь при разряде значительно меньшую энергию, чем соответствует теоретической ЭДС Напряжение при разряде значительно меньше, чем ЭДС из-за наличия необратимых процессов: пассивности электродов, необходимости преодолевать внутреннее омическое сопротивление элемента и т.п. Коэффициент полезного действия с учетом указанного явления будет равен:
h = hмакс (13)
где U – клеммовое напряжение элемента; E – ЭДС элемента.
Если еще учесть, что в топливном элементе могут иметь место потери активных материалов из-за побочных процессов, то полный коэффициент полезного действия по отношению к возможной теплоте сгорания будет равен
hполн = hмаксhF (14)
где hF=– коэффициент полезного действия по току.
Коэффициент hF в значительной мере является условным, его назначение учесть потери, которые можно было бы в принципе использовать для получения энергии и которые не использованы из-за утечек, саморазряда, уноса с циркулирующими жидкостями, газами и т.п. Обычно при рациональной конструкции электродов непроизводительные утечки топливных элементов сводятся к минимуму. В итоге hF для наиболее разработанных водородно-кислородных ТЭ (без учета затрат на продувку) может с достаточным основанием приниматься равным 0,95-0,98.
Максимальная работа и теоретический КПД ТЭ зависят также от давления, концентрации топлива, окислителя и продуктов реакции, поскольку для произвольной реакции aA+bB+…=yY+zZ+…
Здесь ∆G0(T) – изменение энергии Гиббса для реакции, протекающей при той же температуре, но при условии , что все реагенты находятся при стандартном давлении PB=PC=…=PY=PZ=…=1.
Если учесть, что парциальные давления Pi могут быть выражены на основании закона Дальтона через общее давление P и мольную концентрацию компонента xi, то
;
где ∆v=(y+z+…)-(b+c+…) – изменение числа молей при реакции.
Для ЭДС можно записать аналогичные выражения
Поляризация электродов.
Под поляризацией понимают изменение свойств поверхности электродов и прилегающих к ним слоев электролита, вызванное прохождением электрического тока через поверхность. Прохождение тока сопровождается появлением разности потенциалов, противоположной той, которая вызвала электрический ток.