Создание новых лекарственных веществ
Сравнивая полученные результаты, оба метода имеют небольшие отклонения.
Расположение молекулы немного изменяется в зависимости от применяемого метода.
Положительный знак электростатического потенциала отображается зелёным цветом. В области неподелённых пар на атомах азота, кислорода электрический потенциал отрицательный, что отображается красным цветом.
Изменение потенциальной энергии связи С4–N5.
Исследуемая связь между атомами С4–N5. Задаём начальные величины начальная длина связи 0,972; конечная длина связи 2,972; шаг 0,1. Проведя расчёты, изобразим график изменения потенциальной энергии связи С4–N5 от величины растяжения.
Изменение потенциальной энергии углового напряжения C2-C3-С4.
Исследуем угол между атомами C2-C3-С4. Задаём начальные величины начальный угол 50; конечный 140; шаг 10. Проведя расчёты, изобразим график изменения энергии углового напряжения при изменении величины угла.
Оптимизация геометрии и расчёт параметров молекулы методом молекулярной механики (ММ+ и MNDO метод).
- Проведение оптимизации молекулы.
ММ+ метод.
Таблица 5
Длина связи или валентный угол |
Данные ММ расчёта |
Данные MNDO расчёта |
Справочные величины |
С1-С2 С2-С3 С3-С4 С4-N5 N5-C6 C6-C8 C8-C10 C9-C10 C7-C9 N5-C7 C10-C11 C11-O12 C11-O13 O13-C14 C14-C15 C15-N16 N16-C17 N16-C18 C1-C2-C3 C2-C3-C4 C3-C4-N5 C4-N5-C7 C4-N5-C6 N5-C7-C9 C7-C9-C10 C9-C10-C8 C6-C8-C10 C8-C6-N5 C6-N5-C7 C10-C11-O12 C9-C10-C11 C8-C10-C11 C10-C11-O13 O12-C11-O13 C11-O13-C14 C13-C14-C15 C14-C15-N16 C15-N16-C17 C15-N16-C18 |
1,53461 1,53838 1,53856 1,45536 1,45232 1,53586 1,53611 1,53558 1,536 1,4525 1,52029 1,20871 1,34376 1,40919 1,53584 1,45663 1,45283 1,45193 111,827 111,685 116,445 113,912 113,888 111,468 110,753 108,473 112,918 111,794 116,304 127,3 110,877 112,884 112,782 119,917 125,512 107,339 109,614 116,591 116,809 |
1,53147 1,54129 1,55152 1,47019 1,46727 1,54676 1,54834 1,54919 1,5454 1,46687 1,54228 1,22757 1,36181 1,41133 1,56262 1,47096 1,46422 1,4643 114,597 113,519 116,865 117,555 117,81 111,826 113,034 111,009 112,918 111,794 116,304 127,3 110,877 112,884 112,782 119,917 125,512 107,339 109,614 116,591 116,809 |
1,533 1,539 1,542 1,467 1,467 1,539 1,539 1,542 1,542 1,468 1,534 1,213 1,352 1,412 1,556 1,472 1,468 1,464 113,654 113,512 116,865 116,526 116,956 111,429 111,485 111,006 112,918 111,783 116,304 127,3 110,563 112,853 112,782 119,456 125,654 107,339 110,369 115,654 116,809 |
Сравнивая полученные результаты, оба метода имеют небольшие отклонения.
Расположение молекулы немного изменяется в зависимости от применяемого метода.
Положительный знак электростатического потенциала отображается зелёным цветом. В области неподелённых пар на атомах азота, кислорода электрический потенциал отрицательный, что отображается красным цветом.
Изменение потенциальной энергии связи С4–N5.
Исследуемая связь между атомами С4–N5. Задаём начальные величины начальная длина связи 0,97; конечная длина связи 2,97; шаг 0,1. Проведя расчёты, изобразим график изменения потенциальной энергии связи С4–N5 от величины растяжения.
Изменение потенциальной энергии углового напряжения C2-C3-С4.
Исследуем угол между атомами C2-C3-С4. Задаём начальные величины начальный угол 50; конечный 140; шаг 10. Проведя расчёты, изобразим график изменения энергии углового напряжения при изменении величины угла.
3.3 Исследование биологической активности с помощью программы PASS
В работе выполнено исследование биологической активности всех молекулярных структур с помощью программы PASS согласно методике п.2.2.
Дикаин
Если величина Pa близка к единице, то вещество может оказаться близким аналогом известных препаратов.
Базовые структуры лекарств, обладающие существенной новизной, целесообразно отбирать из массива доступных веществ соединения с Pa<0.7. Риск получения отрицательного результата в эксперименте тем больше, чем меньше величина Pa, однако и новизна такой структуры (при подтверждении прогноза в эксперименте) будет более высокой [12]. Pa Pi:
0.603 0.023 спазмолитик,
0.511 0.048 сосудорасширяющее средство,
0.405 0.015 антагонист кальциевых каналов,
0.350 0.107 антигипертензивный,
0.323 0.166 токсичный,
0.114 0.098 агонист β – адренорецепторов,
0.219 0.214 тератоген,
0.092 0.091 антагонист β – адренорецепторов.
1. Структура 1 (карбоксиструктура).
Pa Pi:
0.591 0.025 спазмолитик,
0.367 0.095 сосудорасширяющее средство,
0.264 0.051 антагонист кальциевых каналов,
0.331 0.160 токсичный,
0.301 0.142 антигипертензивный,
0.211 0.144 диуретик,
0.233 0.195 тератоген,
0.113 0.101 агонист β – адренорецепторов,
0.092 0.090 антагонист β – адренорецепторов.
2. Структура 2 (адреноструктура).
Pa Pi:
0.620 0.021 спазмолитик,
0.472 0.059 сосудорасширяющее средство,
0.362 0.020 антагонист кальциевых каналов,
0.218 0.041 агонист дофамина,
0.128 0.020 агонист Д2 дофамина,
0.291 0.188 токсичный,
0.144 0.041 агонист β1 – адренорецепторов,
0.139 0.043 агонист β – адренорецепторов,
0.243 0.182 тератоген,
0.237 0.211 антигипертензивный,
0.133 0.119 агонист α – адренорецепторов.
3. Структура 3 (никотиноструктура).
Pa Pi:
0.683 0.017 сосудорасширяющее средство,
0.548 0.031 спазмолитик,
0.326 0.026 антагонист кальциевых каналов,
0.364 0.098 антигипертензивный,
0.171 0.066 агонист дофамина.
4. Структура 4 (пиперидиноструктура).
Pa Pi:
0.680 0.015 спазмолитик,
0.537 0.042 сосудорасширяющее средство,
0.411 0.014 антагонист кальциевых каналов,