Промышленная технология производства катализатора дегидрирования изоамиленов в изопрен марки КИМ-1
Рефераты >> Химия >> Промышленная технология производства катализатора дегидрирования изоамиленов в изопрен марки КИМ-1

К наиболее важным выводам авторов работ [15,16] относится заключение о том, что формирование активной фазы происходит при восстановлении катализатора.

Таким образом, вопрос о составе активной фазы промотированных железо-оксидных контактов остается открытым. В связи с этим представляется целесообразным изложение основных точек зрения на природу промотирующего действия оксида калия, вводимого в значительных количествах в катализаторы дегидрирования. Эти данные по-видимому, могут служить основной для более четких представлений о составе каталитически активной фазы и механизме ее действия:

Авторы [22,23] считают, что присутствие К2О или кластера на поверхности или в объеме оксида железа приводит к образованию высоко ионизированного центра в преимущественно ковалентном оксиде железа. Этот высоко ионизированный центр способствует созданию локализованного электростатического поля с последующей поляризацией окружающих связей, что приводит к ослаблению связей Fe-O, расположенных рядом с . В конечном итоге присутствие щелочного промотора увеличивает активность железо-оксидных систем, т.к. каталитический процесс включает разрыв связей Fe-О на определенной, возможно, лимитирующей стадии реакции дегидрирования. По мнению китайских ученых [24,25] активный центр представляет собой кластер, состоящий из одного атома калия, двух атомов железа и одного- кислорода. Присутствие калия повышает концентрацию активных центров.

Добавки калия, изменяя энергию связи кислорода в решетке каталитически активных оксидов железа, при определенных условиях уменьшают энергию активации каталитического окисления углеродистых отложений, образующихся в процессе дегидрирования [15,16,26], обеспечивают само регенерацию контакта.

Калий понижает кислотность катализатора, добавляя побочные реакции [25].

Добавки калия способствуют восстановлению железо-оксидного катализатора до определенной степени [21], стабилизирует активную фазу[25].

Анализ литературных данных позволяет сформулировать некоторые предложения о составе активной фазы промотированного железо-оксидного катализатора в условиях реакции дегидрирования:

Каталитически активная фаза представляет собой сложный оксид в состав которого входят железо и калий в соотношении, близком к их общему соотношению в контакте. Другие компоненты катализатора могут входить в состав этого соединения, образуя твердые растворы. Устойчивая работа контакта обеспечивается равномерным распределением компонентов по грануле катализатора, что возможно при наиболее полном взаимодействии исходных веществ [27,28].

Это соединение после микровостановления должно удовлетворять определенным условиям в отношении таких факторов, как геометрическая структура, электронное строение, энергетическое состояние, удовлетворять условиям преобразования валентного состояния ионов железа, обладать шпинельной структурой [25].

Формирование активной фазы происходит при восстановлении катализатора. При устанавливается оптимальное соотношение которое остается практически постоянным в атмосфере, где парциальное давление кислорода определяется соотношением углеводород- водяной пар и температурой.

Катализатор дегидрирования КИМ-1 представляет собой сложную многофазную систему на основе оксидов железа, содержащую в небольших количествах оксида хрома, циркония, алюминия и соединение калия. В основе технологии лежит процесс получения катализаторов методом мокрого смешения с последующим формированием активной фазы путем высокотемпературной обработки исходных соединений.

В качестве исходных компонентов используются оксид железа, хрома, алюминия, циркония и карбонат калия. Все компоненты катализатора последовательно смешиваются в водной суспензии. Химические процессы на стадии смешения не протекают.

Для связывания катализаторной массы с целью придания механической прочности катализатору добавляют жидкое стекло.

Водная суспензия катализаторной смеси упаривается для удаления избыточной воды и перевода смеси в пастообразную форму пригодную для гранулирования.

Полученная катализаторная паста формуется с помощью гранулятора в «червяки», из которых затем в процессе сушки удаляется физически адсорбированная вода. Высушенные гранулы катализатора далее подвергаются высокотемпературной обработке в специальных активаторах или печах.

В процессе высокотемпературной обработки при температурах выше 600 °С в объеме катализатора происходит разложение углекислого калия и взаимодействие оксидов между собой с образованием ферритов Ме , где Ме – это сумма катионов металла К,Cr,Аl.

Готовый катализатор КИМ-1 имеет следующий химический состав: Fe2O3-53,5%, Cr2O3-3,8%, ZrO2-3,0%, K2CO3-31,1%, AI2O3-1,7%, KOH-2,3%, сажа белая-4,6%.

Выход готового катализатора составляет 275 т. в год, 25т. в месяц.

Отходами производства являются катализаторная пыль, сколы и крошки.

3. Описание технологического процесса и технологической схемы производственного объекта

В процессе производства катализатора КИМ-1 исходные компоненты, взятые в виде оксидов железа, хрома, циркония, алюминия и карбоната калия, смешиваются в водной среде.

Для связывания катализаторной массы с целью придания механической прочности катализатору в смеситель 4 добавляют жидкое стекло.

При последующей термической обработке катализатора происходит разложение углекислого калия и взаимодействие оксидов между собой с образованием ферритов.

Процесс получения катализатора КИМ-1 состоит из следующих операций:

- подготовки исходных компонентов;

- приготовление катализаторной смеси;

- приготовление жидкого стекла;

- получение катализаторной массы и формовки;

- активации катализатора.

3.1 Подготовка исходных компонентов

Мешки с желтым железо-окисным пигментом и углекислым калием складывают на поддоны. Эти поддоны при помощи электрической тали 1 поднимают на отметку 19.200 для загрузки в реактор 2.

Оксид хрома, двуокись циркония, активный оксид алюминия после размола в дисмембраторе 13 взвешивают на весах, затем поднимают на отметку 19.200 электрической талью 1 для загрузки в реактор 2.

3.2 Приготовление катализаторной смеси

Приготовлении водной суспензии компонентов и гидротермальная обработка происходит в реакторе 2 с якорной мешалкой и рубашкой для обогрева паром В реактор 2 заливают 1,5 куб/м. Обессоленной воды, включается мешалка и через загрузочный люк засыпают расчетное количество углекислого калия и перемешивают в течении 30 мин. С одновременным нагреванием раствора до подачей пара с давлением 5 кгс/ в рубашку. При достижении температуры 80- С через загрузочный люк засыпают расчетное количество желтого железо-оксидного пигмента и проводят термообработку в течении 7 часов. Вниз реактора 2 подается технологический воздух для предотвращения отложения осадков. После термообработки в реактор 2 засыпают расчетное количество активной окиси алюминия, окиси хрома, двуокиси циркония и доливают обессоленной воды до 2. После 1 часа перемешивание полученной катализаторной смеси производят отбор пробы суспензии на ее химический состав. При положительных результатах химического анализа осуществляют процесс получения катализаторной массы.


Страница: