Получение уксусной кислоты
Сведём полученные данные в таблицу термодинамических функций реакции:
Т, КТ, К | 298 | 313 | 328 | 343 | 358 | 363 | 378 | 393 | 408 | 433 | 448 |
–ΔН° Т кДж/моль | 218,3 | 218,37 | 218,43 | 218,49 | 218,55 | 218,57 | 218,63 | 218,68 | 218,74 | 218,82 | 218,86 |
–ΔS° Т Дж/моль | 57,77 | 57,98 | 58,19 | 58,37 | 58,54 | 58,60 | 58,75 | 58,89 | 59,03 | 59,22 | 59,32 |
–ΔG° Т кДж/моль | 201,08 | 200,22 | 199,35 | 198,47 | 197,59 | 197,30 | 196,42 | 195,54 | 194,65 | 193,18 | 192,29 |
kp | 1,77•1035 | 2,59•1033 | 5,59•1031 | 1,68•1030 | 6,78•1028 | 2,47•1028 | 1,39•1027 | 9,78•1025 | 8,35•1024 | 2,02•1023 | 2,63•1022 |
Выводы
1. Выполненные расчёты термодинамических функций показывают, что реакция окисления этилена в ацетальдегид идёт с выделением теплоты. Причём с увеличением температуры реакционной массы абсолютное значение ΔН°Т немного увеличивается. Согласно принципу Ле-Шателье для увеличения выхода продукта реакции, идущей с выделением теплоты, необходимо осуществлять отвод тепла от реакционной смеси.
2. Изменение энтропии для данной реакции во взятом интервале температур отрицательно. То есть в изолированной системе самопроизвольное протекание данной реакции в прямом направлении невозможно. Значение ΔS° Т с повышением температуры возрастает, следовательно возрастают и термодинамические трудности протекания процесса. Однако на практике имеют дело с неизолированными системами и этот параметр в нашем случае не может служить критерием направленности химической реакции.
3. О направленности химической реакции в изобарно-изотермических условиях судят по значению изменения свободной энергии Гиббса ΔG° Т. Расчёт показывает, что ΔG° Т во всём изученном интервале температур отрицательно, следовательно в пределах этих температур возможно самопроизвольное протекание реакции в прямом направлении. При увеличении температуры абсолютное значение изменения свободной энергии Гиббса уменьшается, значит с увеличением температуры возникают трудности для протекания процесса в прямом направлении. Следовательно при проведении процесса необходимо отводить тепло, выделяющееся в ходе реакции.
4. Константы равновесия для всего интервала температур значительно больше единицы, поэтому в реакционной смеси при достижении состояния равновесия продукты реакции будут существенно преобладать над исходными веществами. С увеличением температуры соотношение между продуктами реакции и исходными веществами в равновесном состоянии будет уменьшаться (уменьшается значение kp), следовательно и выход продукта уменьшится. Для увеличения выхода необходимо постоянно охлаждать реакционную смесь, отводя выделяющуюся теплоту.
Таким образом для получении максимально возможного выхода ацетальдегида при проведении окисления этилена кислородом следует выбрать реактор, оснащённый теплообменной рубашкой.
3. Механизм реакции получения ацетальдегида
Процесс синтеза ацетальдегида из этилена в присутствии палладиевого катализатора относится к гомогенно-каталитическим.
Гомогенные каталитические процессы, типа:
обычно начинаются с образования промежуточного комплекса Akt в результате обратимого воздействия между катализатором (kt) и одним из исходных реагентов (А):
Во второй стадии, образовавшийся промежуточный комплекс взаимодействует со вторым реагентом, образуя активированный комплекс [АВ]** kt:
В третьей стадии в результате распада [АВ]**kt образуются продукты реакции[20, с. 70]:
3.1 Механизм реакции
Каталитическое окисление этилена до ацетальдегида в гомогенном водном растворе на палладиево-медном катализаторе при 20—60°С известно как вакер-процесс, по названию компании, в которой в конце пятидесятых годов этот процесс был разработан Шмидтом. Этот процесс является одним из ранних примеров промышленного использования гомогенного катализа. В последующие годы значительное внимание исследователей было уделено реакционному механизму и возможностям влияния на состав образующихся продуктов
Стехиометрическая реакция, в которой Pd(II) восстанавливается до металла, была описана еще в 1894 г. Открытие Шмидта заключалось в том, что он сумел окислить Pd(0) действием CuCl2:
Pd° + 2CuCl2 PdCl2 + CuCl
Этот факт в сочетании с простым окислением соли меди кислородом или воздухом: