Получение уксусной кислоты
Рефераты >> Химия >> Получение уксусной кислоты

При действии на ацетальдегид кислот происходит его тримеризация, образуется паральдегид:

CH – CH3

O O

3CH3CHO СH3 – CH CH – CH3

O

5. Галогенирование

Ацетальдегид реагирует с бромом и иодом с одинаковой скоростью независимо от концентрации галогена. Реакции ускоряются как кислотами, так и основаниями.

CH3CHO + Br2 CH2BrCHO + HBr

6. Декарбоксилирование

При нагревании с трис(трифенилфосфин)родийхлоридом претерпевают декарбонилирование с образованием метана:

CH3CHO + [(C6H5)P]3RhClCH4 + [(C6H5)3P]3RhCOCl

7. Конденсация

7.1 Альдольная конденсация

В слабоосновной среде (в присутствии ацетата, карбоната или сульфита калия) ацетальдегид подвергаются альдольной конденсации по А. П. Бородину с образованием альдегидоспирта (3-гидроксибутаналя), сокращенно называемого альдолем. Альдоль образуется в результате присоединения альдегида к карбонильной группе другой молекулы альдегида с разрывом связи С — Н в α-положеиии к карбонилу:

CH3CHO + CH3CHO CH3–CHOH–CH2–CHO

Альдоль при нагревании (без водоотнимающих веществ) отщепляет воду с образованием непредельного кротонового альдегида (2-бутеналя) [16, с. 176]:

CH3–CHOH–CH2–CHO CH3–CН=CH–CHO + Н2О

Поэтому переход от предельного альдегида к непредельному через альдоль называется кротоновой конденсацией. Дегидратация происходит благодаря очень большой подвижности водородных атомов в α-положении по отношению к карбонильной группе (сверхсопряжение), причем разрывается, как и во многих других случаях, р-связь по отношению к карбонильной группе.

7.2 Сложноэфирная конденсация

Проходит с образованием уксусноэтилового эфира при действии на ацетальдегид алкоголятов алюминия в неводной среде (по В. Е. Тищенко):

O

2CH3CHOCH3–CH2–O–C–CH3

7.3 Конденсация Клайзена— Шмидта.

Эта ценная синтетическая реакция состоит в катализируемой основаниями конденсации ароматического или иного альдегида, не имеющего водородных атомов, с алифатическим альдегидом или кетоном. Например, коричный альдегид может быть получен встряхиванием смеси бензальдегида и ацетальдегида примерно с 10 частями разбавленной щелочи и выдерживанием смеси в течение 8—10 суток. В этих условиях обратимые реакции приводят к двум альдолям, но один из них, в котором 3-гидроксил активирован фенильной группой, необратимо теряет воду, превращаясь в коричный альдегид[18, с. 554]:

C6H5—CHO + CH3CHO C6H5–CHOH–CH2–CHO C6H5–CH=CH–CHO

1.3.3.3 Химические свойства кислорода

Кислород обладает высокой химической активностью, особенно при нагревании и в присутствии катализатора. С большинством простых веществ он взаимодействует непосредственно, образуя оксиды. Лишь по отношению к фтору кислород проявляет восстановительные свойства.

Подобно фтору кислород образует соединения почти со всеми элементами (кроме гелия, неона и аргона). С галогенами, криптоном, ксеноном, золотом и платиновыми металлами он непосредственно не реагирует, и их соединения получают косвенным путем. Со всеми остальными элементами кислород соединяется непосредственно. Эти процессы обычно сопровождаются выделением теплоты.

Поскольку по электроотрицательности кислород уступает только фтору, степень окисления кислорода в подавляющем большинстве соединений принимается равной -2. Кроме того, кислороду приписывают степени окисления +2 и + 4, а также +1(F2O2) и -1(Н2О2) [17, с. 337].

Наиболее активно окисляются щелочные и щелочноземельные металлы, причем в зависимости от условий образуются оксиды и пероксиды:

О2 + 2Са = 2СаО

О2 + Ва = ВаО2

Некоторые металлы в обычных условиях окисляются лишь с поверхности (например, хром или алюминий). Образующаяся пленка оксида препятствует дальнейшему взаимодействию. Повышение температуры и уменьшение размеров частиц металла всегда ускоряют окисление. Так, железо в нормальных условиях окисляется медленно. При температуре же красного каления (400 °С ) железная проволока горит в кислороде:

3Fe + 2О2 = Fe3 O4

Тонкодисперсный железный порошок (пирофорное железо) самовоспламеняется на воздухе уже при обычной температуре.

С водородом кислород образует воду:

Н2 + O2 = Н2O

При нагревании сера, углерод и фосфор горят в кислороде. Взаимодействие кислорода с азотом начинается лишь при 1200 °С или в электрическом разряде:

N2 + O2 = 2NO

Водородные соединения горят в кислороде, например:

2H2S + ЗО2 = 2SO2 + 2Н2О (при избытке О2)

2Н2S + О2 = 2S + 2Н2О (при недостатке О2)

СН4 + 2О2 = СО2 + 2Н2О

2. Термодинамический анализ основной реакции

2.1 Исходные данные для термодинамических расчётов

Процесс окисления ацетальдегида в ацетилен протекает согласно следующему уравнению химической реакции:

СН2 = СН2 + 0,5О2 СН3СНО

Справочные данные термодинамических величин исходных веществ и продукта реакции имеют следующие значения[19]:

Вещество

ΔН°f, 298, кДж/моль

S°298, Дж/моль•К

с°р= f(T)

a

b•103

c'•10-5

c•106

СН3СНО

-166

264,20

13,00

153,50

-53,70

С2Н4

52,30

219,45

11,32

122,01

-37,90

О2

0

205,04

31,46

3,39

-3,77


Страница: