Получение пурпуреосоли. Аммиакаты кобальта (III)
Рефераты >> Химия >> Получение пурпуреосоли. Аммиакаты кобальта (III)

Действительно, прежде всего нужно указать на то, что наряду с хлоридом [Go(NH3)6]Gl3 известны также бромид [Co(NH3)6]Br3, нитрат, сульфат, хлороплатинат, оксалат и многие другие соли, содержащие комплексный ион [Go(NH3)6]3+. Те соли, анионы которых бесцветны, окрашены в характерный желтый цвет, который и дал повод назвать эти соединения лутеосолями.

Известен также ряд солей, в которых молекулы аммиака целиком или частично замещены другими нейтральными молекулами, связанными с ионом Со3+. Так, известен ряд солей, в которых все шесть молекул аммиака заменены молекулами гидроксиламина.

Соли эти имеют состав [Co(NH2OH)6]X3. Они также окрашены в желтый цвет и химически совершенно аналогичны солям [Co(NH3)6]X3.

Хорошо изучены производные кобальта, в которых аммиак заменен этилендиамином. Содержащий две группы NH2 этилендиамин по своей способности к комплексообразованию эквивалентен двум молекулам аммиака. Ввиду этого каждая молекула этилендиамина замещает две молекулы аммиака и максимальное число молекул этилендиамина, могущее присоединиться к атому кобальта, равно трем. Так как этилендиамин весьма склонен к комплексообразованию, то соответствующие соли легко получаются при действии этилендиамина на ряд солей кобальта. В частности, соли состава [СоЕп3]Х3 могут быть легко синтезированы при действии этилендиамина на описываемые далее хлоропентамины кобальта в соответствии с уравнением:

[Co(NH3)5Cl]Cl2 + ЗЕn = [СоЕп3]С13 + 5NH3

Соли состава [СоЕп3]Х3 могут быть также получены при окислении кислородом воздуха растворов хлорида кобальта, содержащих избыток этилендиамина. Состав комплексного иона и тип ионного распада комплексной соли устанавливаются такими же методами, что и в случае солей состава [Co(NH3)6]X3. Эти соли также окрашены в желтый цвет.

Молекулярная электропроводность хлорида [СоЕn3]С13 равна 352 при V = 1000 л и t = 25° С. Она заметно ниже, чем для [Co(NH3)6]Q3, но все же укладывается в пределы, характерные для солей, распадающихся на четыре иона.

Наряду с солями, в которых все шесть молекул аммиака заменены другими нейтральными молекулами, известны в большом количестве также соли, в которых с ионом металла одновременно связаны разные нейтральные молекулы. Так, здесь можно в качестве примера привести соли состава [CoEn2(NH3)2]X3, которые будут впоследствии подробно рассмотрены в связи с проблемой геометрической изомерии, а также соли состава [CoEn2NH3Py]X3. Число примеров здесь могло бы быть значительно увеличено.

Все до сих пор упоминавшиеся соли были производными трехвалентного кобальта. Однако известно большое число гексаминов, производящихся от других металлов. В частности, можно указать на гексамины трехвалентных хрома, иридия, родия, рутения, четырехвалентной платины, двухвалентных никеля, цинка, кадмия, меди, железа и др.

Значительная часть подобных продуктов обладает прочностью, достаточной для того, чтобы состав комплексного иона и тип ионного распада могли быть установлены методами, описанными выше. Так, в частности, это относится ко всем аммиакатам и аминатам тяжелых металлов, а также к производным мочевины и тиомочевины. Способы получения соединений гексаминового типа в принципе и сводятся к реакциям взаимодействия какой-либо соли данного металла с избытком компонента А. Так, гексамины ряда двухвалентных металлов могут быть получены взаимодействием солей соответствующих металлов со значительным избытком аммиака в водном растворе.

Последующее добавление какого-либо аниона, образующего сданным комплексным катионом трудно растворимое соединение, дает возможность выделить раствора соответствующую соль.

В подобных случаях состав выпадающего осадка будет в первую очередь определяться соотношениями растворимости. Гексамины хрома, родия, иридия, платины получаются с большим трудом в отличие от гексаминов двухвалентных металлов. Это объясняется тем, что в растворах солей этих металлов, очень склонных к комплексообразованию, меньше ионов металла, которые могли бы всту пать во взаимодействие с добавляемым компонентом А. В особенности это относится к солям металлов платиновой группы. В растворах солей этих металлов, являющихся исходным продуктом для получения гексаминов, ионы металла не просто гидратированы, как это имеет место для большинства двухвалентных металлов, но более или менее прочно связаны с кислотными остатками. Таким образом, для того чтобы гексамин мог образоваться, должна быть предварительно разорвана комплексная связь иона металла с анионами. Кроме того, очевидно, что при процессах получения гексаминов, связанных с разрушением исходных комплексных ионов, существенную роль играет прочность связи этих последних. Поэтому не безразлично, какое соединение данного тяжелого металла (платины, иридия, родия, хрома и т. п.) взять за исходное вещество для получения гексамина. Понятно, что надо брать такие соединения, в которых содержатся наименее прочные исходные комплексы.

И наконец, так же очевидно, что процессы, при которых присоединения молекул компонента А связано с оттеснением компонентов первоначального комплекса, вряд ли могут протекать совершенно гладко, с образованием только одного конечного продукта (в данном случае соединения гексаминового типа). Несомненно,, процесс замены первоначального компонента комплекса (например, иона хлора) молекулами компонента А (аммиака, амина, тиомочевины и т. д.) идет ступенчато, так что при таких реакциях следует, как правило, ожидать появления промежуточных продуктов, т. е. комплексов, в которых с ионом металла связаны как исходные компоненты, так и вновь внедряемые.

Учитывая, что при действии избытка А на соли тяжелых металлов, как правило, получаются смеси продуктов, соответствующие гексамины иногда приходится готовить не сразу, а в два или даже больше приемов. Так, разобранное нами выше соединение [Co(NH3)6]Q3, которое является только одним из многочисленных продуктов реакции окисления соединений двухвалентного кобальта в аммиачном растворе, обычно готовилось путем действия аммиака под давлением на предварительно приготовленную соль [Go(NH3)5 С1]С12 Реакция протекает согласно схеме:

[Co(NH3)5Cl]Cl2 + NH, = [Co(NH3)6]Cl3

За последние годы было довольно много работ, посвященных синтезу гексамминов Со (III) и Pt (IV). Я. Г Бьеррум показал, что гексаммин [ Co(NH3)6]Cl3 может быть получен и непосредственно при окислении кислородом воздуха раствора, содержащего СоС12, NH4C1 и NH3, если только добавить в раствор небольшое количество активированного угля в качестве катализатора. Гексаммин при этом может быть получен с выходом около 85%.

Гексаммины солей щелочных и щелочноземельных металлов, аммиакаты которых очень непрочны и разлагаются в водном растворе, как уже было указано во введении, могут быть получены в виде твердых фаз лишь при действии газообразного аммиака на твердые соли в отсутствие воды.

Сопоставляя сказанное, можно придти к заключению, что реакции получения гексаминов являются по существу не реакциями присоединения, но реакциями замещения. Чем менее прочна связь иона металла с теми заместителями, с которыми он связан в исходном соединении, и чем больше сродство иона данного металла Me к молекуле компонента А, тем легче может получиться требуемый гексамин. Чтобы сознательно подойти к выбору наилучших условий для синтеза того или иного гексамина, нужно иметь, хотя бы в общих чертах, характеристику способности данного металла к комплексообразованию с различными по своей химической природе компонентами А. Соединения гексоминного типа являются, как бы, придельным типом соединений, относящихся к категории аммиакатов, аминатов или двойных солей.


Страница: