Жидкофазный металлокомплексный катализ
Рефераты >> Химия >> Жидкофазный металлокомплексный катализ

Однако последующее развитие событий опровергло этот вывод. Интересна динамика изменения объема производства продуктов оксосинтеза и доли процессов, использующих родиевые катализаторы (табл.2).

Таблица 2

Динамика изменения объема производства продуктов оксосинтеза и используемости катализаторов различного типа

Год

Объем производства, млн.т/г

Доля продукции, полученной с использованием родиевых катализаторов, %

1965

0,8

0

1980

5,2

10

1996

6,6

80

Приведенные данные свидетельствуют о существенной переориентации даже действующих производств на родиевые катализаторы.

Для иллюстрации вышеперечисленных методов разделения каталитических систем рассмотрим технологические схемы оксосинтеза в историческом аспекте.

Проблема разделения каталитической системы и продуктов в оксосинтезе актуальна, поскольку продукты достаточно реакционноспособны и имеют высокие температуры кипения, в кобальт в виде карбонильных соединений каталитически активен и летуч. Поэтому для процесса оксосинтеза были разработаны различные варианты выделения соединений кобальта (декобальтизации) и выделения продуктов гидроформилирования из каталитической системы.

Исторически первыми были схемы выде5ления кобальта в твердую фазу, основанные на термической декобальтизации. В этих вариантах формирование каталитически активных комплексов и их распад до металлического кобальта протекают в соответствии с уравнением (прямая и обратная стадии соответственно):

2Co + 8CO ↔ Co2(CO)8

Направление реакции определяется давлением оксида углерода и температурой. При температуре 80-130° и давлении CO 100-150 ат равновесие реакции сдвинутов сторону образования дикобальтоктакарбонила. Если повысить температуру до 300°, а оксид углерода заменить на чистый водород под давлением 10-15 ат, то равновесие реакции сместится влево и металлический кобальт образует фазу на имеющейся поверхности или в растворе. Первый вариант термической декобальтизации был реализован в так называемой диадной схеме.

Диадная схема

Установка оксосинтеза в соответствии с диадной схемой включает два одинаковых аппарата высокого давления, заполненные неподвижной насадкой (пемзой). В одном из этих аппаратов (1 или 3, рис.) на насадку нанесен металлический кобальт. Оба аппарата снабжены коммуникациями для подвода алкена, синтез-газа и водорода. В аппарат с нанесенным на насадку кобальтом подают при нужной температуре растворитель, синтез-газ и алкен (пропилен). За счет реакции карбонилирования:

Co + CO → Co2(CO)8 + H2 → HCo(CO)4

кобальт растворяется с насадки.

После определенного времени пребывания в реакторе 1 контактный раствор через фазовый сепаратор 2 поступает в реактор 3, в котором создаются условия для разложения карбонилов кобальта (РН2 10-50 ат, 250-300°). В этих условиях образовавшийся металлический кобальт садится на чистую насадку, находящуюся в реакторе 3. Освобождаемый от кобальта контактный раствор поступает на стадию гидрирования в реактор 4 (через фазовый сепаратор 2). Образующиеся бутиловые спирты разделяются в колоннах 5, а растворитель возвращается на стадию гидроформилирования. После того, как большая часть кобальта перейдет в реактор 3, функции аппаратов меняются. В реакторе 3 протекает карбонилообразование и гидроформилирование, а реактор 1 работает как декобальтизер.

Развитием и усовершенствованием диадной схемы явилась триадная схема.

Триадная схема

Недостатком диадной схемы является периодичность работы аппаратов и образования продуктов гидроформилирования. Отсутствие непрерывности, частично сглаживаемое наличием промежуточных емкостей, осложняет работу подсистемы разделения. Для решения этой проблемы в триадной схеме появляется специализированный реактор гидроформилирования. В схему входят три основных аппарата: два аппарата выполняют поочередно функции кобальтизера (апп. 3 и 3’, схема ), в котором образуется раствор карбонилов кобальта в растворителе, и декобальтизера, а в третьем (апп. 1, схема) протекает гидроформилирование. Кобальтизер заполняется пемзой с нанесенным на нее кобальтом, а декобальтизер – чистой пемзой. По мере истощения кобальта в кобальтизере и накопления его в декобальтизере функции этих аппаратов меняются. Для быстрого перехода кобальта в карбонилы требуется давление синтез-газа ~300 ат и температура 80-300°С. Гидроформилирование проводят также при 20,0-30,0 МПа. В связи с этим все три аппарата должны быть рассчитаны на работу под высоким давлением.

Небходимость использования большого количества аппаратов под высоким давлением – основной недостаток диадной и триадной схем. Кроме этого – высокая цикличность работы отдельных аппаратов, затрудняющая организацию полностью непрерывного производства, неравномерное осаждение кобальта на насадке, невысокая производительность в расчете на единицу объема аппарата высокого давления.

Принцип термического разложения карбонилов кобальта с осаждением металлического кобальта на развитой поверхности носителя был использован в кизельгурной схеме. Только в этом варианте носитель был движущийся и это позволило в значительной мере преодолеть недостатки диадной и триадной схем.

Кизельгурная схема

Схема включает два последовательно соединенных реактора гидроформилирования (1 и 2, схема). В первый реактор катализатор поступает в виде порошка природного алюмосиликата – кизельгура, на который нанесен металлический кобальт. В первом реакторе происходит (при давлении синтез-газа 250-300 ат и температуре 150-170°С) образование (с переходом в раствор) карбонилов кобальта и частично реакция гидроформилирования. Завершается гидроформилирование во втором аппарате при температуре на 10-20° более высокой, чем в первом аппарате. Контактный раствор с суспендированным кизельгуром поступает на декобальтизацию. Декобальтизацию осуществляют в двух последовательно работающих реакторах 4 при 120-130°С и давлении водорода 2,5-3,0 МПа. Карбонильные комплексы распадаются и кобальт, осажденный на кизельгур, отделяется от раствора в магнитных сепараторах 5.

Основные недостатки этой схемы связаны, во-первых, с эрозией аппаратуры и запорной арматуры, во-вторых, со сложностью отделения суспензии катализатора от жидких продуктов с помощью магнитных сепараторов. Схема использовалась в промышленном масштабе. Кроме того, был разработан аналог схемы, в котором использовали порошок кобальта (без носителя).

Общим недостатком схем, основанных на термической декобальтизации, является частичное гидрирование альдегидов в спирты. Поэтому все вышеприведенные схемы включают узел гидрирования для получения спиртов в качестве основных продуктов. Иначе обстоит дело в случае так называемых солевых схем.


Страница: