Логическая структуризация сетей
Рефераты >> Коммуникации и связь >> Логическая структуризация сетей

Байты кадра

Рис. 4 Коммутационная матрица

Третья базовая архитектура взаимодействия портов — двухвходовая разделяемая память. Пример такой архитектуры приведен на рис. 5.

Входные блоки процессоров портов соединяются с переключаемым входом раз­деляемой памяти, а выходные блоки этих же процессоров соединяются с переклю­чаемым выходом этой памяти. Переключением входа и выхода разделяемой памяти управляет менеджер очередей выходных портов. В разделяемой памяти менеджер организует несколько очередей данных, по одной для каждого выходного порта. Входные блоки процессоров передают менеджеру портов запросы на запись дан­ных в очередь того порта, который соответствует адресу назначения пакета. Ме­неджер по очереди подключает вход памяти к одному из входных блоков процессоров и тот переписывает часть данных кадра в очередь определенного выходного порта. По мере заполнения очередей менеджер производит также поочередное подключе­ние выхода разделяемой памяти к выходным блокам процессоров портов, и данные из очереди переписываются в выходной буфер процессора.

Рис. 5Архитектура разделяемой памяти

Память должна быть достаточно быстродействующей для поддержания скоро­сти переписи данных между N портами коммутатора. Применение общей буферной памяти, гибко распределяемой менеджером между отдельными портами, снижает требования к размеру буферной памяти процессора порта.

У каждой из описанных архитектур есть преимущества и недостатки, поэтому в сложных коммутаторах эти схемы применяются в комбинации друг с другом.

Коммутатор(рис. 6) состоит из модулей с фиксированным количеством портов (2-12), выполненных на основе специализированной БИС, реализующей архитектуру ком­мутационной матрицы. Если порты, между которыми нужно передать кадр дан­ных, принадлежат одному модулю, то передача кадра осуществляется процессорами модуля на основе имеющейся в модуле коммутационной матрицы. Если же порты принадлежат разным модулям, то процессоры общаются по общей шине. При та­кой архитектуре передача кадров внутри модуля будет происходить быстрее, чем при межмодульной передаче, так как коммутационная матрица — наиболее быст­рый, хотя и наименее масштабируемый способ взаимодействия портов. Скорость внутренней шины коммутаторов достигает Гбайт/с, а у мощных моделей до десятков Гбайт/с. На рис. изображен подобный коммутатор

Рис. 6 Комбинированный коммутатор

1.2.2 Параметры коммутаторов

- скорость продвижений (forwarding)

- скорость фильтрации (filtering)

- пропускная способность коммутатора (throughput)

- время задержки передачи кадра

- тип коммутации

- размер адресной таблицы

- размер буферной памяти

Скорость продвижения, измеряемая в количестве кадров в секунду, определяет скорость, с которой происходит передача кадра между входным и выходным портами. Сам процесс передачи кадра включает в себя несколько этапов. Первый этап — это процесс буферизации либо всего кадра в целом, либо первых байтов кадра, содержащих адрес назначения. После определения адреса назначения кадра происходит процесс поиска искомого выходного порта в адресной таблице, которая может быть расположена либо в локальном кэше порта, либо в общей адресной таблице. После определения нужного выходного порта процессор принимает решение о продвижении кадра и посылает запрос на доступ к выходному порту. Установление необходимой связи между выходным и входным портами сопровождается передачей кадра в сеть через выходной порт.

Скорость фильтрации, так же как и скорость продвижения, измеряется в количестве кадров в секунду и характеризует скорость, с которой порт фильтрует, то есть отбрасывает ненужные для передачи кадры. Первый этап процесса фильтрации — это буферизация либо всего кадра, либо только первых адресных байтов кадра. После этого процессор просматривает адресную таблицу на предмет установления необходимого выходного порта. Определив, что адрес выходного порта совпадает с адресом входного порта, процессор принимает решение о фильтрации кадра и очищает свой буфер.

Скорость фильтрации и скорость продвижения зависят как от производительности процессоров портов, так и от режима работы коммутатора, о чем будет сказано далее. Наибольшего значения скоростей можно достигнуть при наименьшем размере кадров, так как в этом случае скорость их поступления максимальна. Как правило, скорость фильтрации является неблокирующей, то есть обработка кадров может происходить со скоростью их поступления.

Пропускная способность коммутатора, измеряемая в мегабитах в секунду (Мбит/с), определяет какое количество пользовательских данных можно передать через коммутатор за единицу времени. Максимальное значение пропускной способности достигается на кадрах максимальной длины, поскольку в этом случае доля накладных расходов на служебную информацию в каждом кадре мала.

Время задержки передачи кадра определяется как время, прошедшее с момента поступления первого байта кадра на входной порт коммутатора до момента появления этого байта на его выходном порте. Время задержки, так же как и скорость фильтрации и продвижения, зависит от типа коммутации, поэтому принято указывать лишь минимально возможное время задержки, которое составляет от единиц до десятков микросекунд.

Типы коммутации рассмотрены в пункте 1.2.

Размер адресной таблицы определяет то максимальное количество MAC-адресов, которое может хранить коммутатор. Обычно размер адресной таблицы приводится в расчете на один порт. Размер адресной таблицы зависит от области применения коммутаторов. Так, при использовании коммутатора в рабочей группе при микросегментации сети достаточно всего несколько десятков адресов. Коммутаторы отделов должны поддерживать несколько сот адресов, а коммутаторы магистралей сетей — до нескольких тысяч адресов. Размер адресной таблицы сказывается на производительности коммутатора только в том случае, если требуется больше адресов, чем может разместиться в таблице. Если адресная таблица порта коммутатора полностью заполнена и встречается кадр с адресом, которого нет в таблице, то процессор размещает этот адрес в таблице, вытесняя при этом какой-либо старый адрес. Эта операция отнимает у процессора порта часть времени, что снижает производительность коммутатора. Кроме того, если после этого порт получает кадр с адресом назначения, который пришлось предварительно удалить из таблицы, по процессор порта передает этот кадр на все остальные порты, так как не может определить адрес назначения. Это в значительной степени отнимает процессорное время у процессоров всех портов и создает излишний трафик в сети, что еще больше снижает производительность коммутатора.


Страница: