Логическая структуризация сетейРефераты >> Коммуникации и связь >> Логическая структуризация сетей
Структурная схема коммутатора EtherSwitch, предложенного фирмой Kalpana, представлена на рис. 3
Рис.3 Структура коммутатора Kalpana EtherSwitch
Каждый из 8 портов lOBase-T обслуживается одним процессором пакетов Ethernet — ЕРР (Ethernet Packet Processor). Кроме того, коммутатор имеет системный модуль, который координирует работу всех процессоров ЕРР. Системный модуль ведет общую адресную таблицу коммутатора и обеспечивает управление коммутатором по протоколу SNMP. Для передачи кадров между портами используется коммутационная матрица, подобная тем, которые работают в телефонных коммутаторах или мультипроцессорных компьютерах, соединяя несколько процессоров с несколькими модулями памяти.
Коммутационная матрица работает по принципу коммутации каналов. Для 8 портов матрица может обеспечить 8 одновременных внутренних каналов при полудуплексном режиме работы портов и 16 — при полнодуплексном, когда передатчик и приемник каждого порта работают независимо друг от друга.
При поступлении кадра в какой-либо порт процессор ЕРР буферизует несколько первых байт кадра, чтобы прочитать адрес назначения. После получения адреса назначения процессор сразу же принимает решение о передаче пакета, не дожидаясь прихода остальных байт кадра. Для этого он просматривает свой собственный кэш адресной таблицы, а если не находит там нужного адреса, обращается к системному модулю, который работает в многозадачном режиме, параллельно обслуживая запросы всех процессоров ЕРР. Системный модуль производит просмотр общей адресной таблицы и возвращает процессору найденную строку, которую буферизует в своем кэше для последующего использования. После нахождения адреса назначения процессор ЕРР знает, что нужно даль делать с поступающим кадром (во время просмотра адресной таблицы процесс продолжал буферизацию поступающих в порт байтов кадра). Если кадр нужно отфильтровать, процессор просто прекращает записывать в буфер байты, очищает буфер и ждет поступления нового кадра
Если же кадр нужно передать на другой порт, то процессор обращается к коммутационной матрице и пытается установить в ней путь, связывающий его с портом, через который идет маршрут к адресу назначения. Коммутационная матрица может это сделать только в том случае, когда порт адреса назначения в: момент свободен, то есть, не соединен с другим портом. Если же порт занят, то, как и в любом устройстве с коммутацией каналов, матрица в соединении отказывает. В этом случае кадр полностью буферизуется процессором входного порта, после чего процессор ожидает освобождения выхода порта и образования коммутационной матрицей нужного пути. После того как нужный путь установлен, в него направляются буферизованные байты кадра, которые принимаются процессором выходного порта. Как только процессор выходного порта получает доступ к подключенному к нему сегменту Ethernet по алгоритму CSMA/CD, байты кадра сразу же начинают передаваться в сеть. Процессор входного порта постоянно хранит несколько байт принимаемого кадра в своем буфере, что позволяет ему независимо и асинхронно принимать и передавать байты кадра (рис. 4)
При свободном в момент приема кадра состоянии выходного порта задержка между приемом первого байта кадра коммутатором и появлением этого же байта на выходе порта адреса назначения составляла у коммутатора компании Kalpana 40 мкс, что было гораздо меньше задержки кадра при его передаче мостом.
Описанный способ передачи кадра без его полной буферизации получил название коммутации «на лету» («on-the-fly») или «напролет» («cut-through»). Этот способ представляет, по сути, конвейерную обработку кадра, когда частично совмещаются во времени несколько этапов его передачи.
1. Прием первых байт кадра, процессором входного порта, включая прием байт адреса назначения.
1. Поиск адреса назначения в адресной таблице коммутатора (в кэше процессора или в общей таблице системного модуля).
2. Коммутация матрицы.
3. Прием остальных байт кадра процессором входного порта.
1. Прием байт кадра (включая первые) процессором выходного порта через коммутационную матрицу
2. Получение доступа к среде процессором выходного порта.
3. Передача байт кадра процессором выходного порта в сеть.
Этапы 2 и 3 совместить во времени нельзя, так как без знания номера выходного порта операция коммутации матрицы не имеет смысла. По сравнению с режимом полной буферизации кадра, экономия от конвейеризации получается ощутимой.
При коммутации с буферизацией кадр поступает в буфер входного процессора, где по контрольной сумме проверяется на наличие ошибок. Если ошибки не обнаружены, пакет передается на выходной порт. Этот способ коммутации гарантирует фильтрацию от ошибочных кадров, но за счет снижения пропускной способности коммутатора по сравнению со сквозной коммутацией.
Существуют следующие методы коммутации:
- Метод безфрагментной коммутации. Буфер входного порта поступает не весь кадр, а только первые 64 байта. Для кадра минимального размера это соответствует полной буферизации, а для кадров, размер которых больше 64 байтов, это соответствует сквозной коммутации. Таким образом, при безфрагментной буферизации проверке подлежат только кадры минимального размера.
- В зависимости от конкретных условий работы предпочтителен тот или иной способ коммутации. При адаптивной коммутации коммутатор сам выбирает для каждого порта оптимальный режим работы. Вначале все порты устанавливаются в режим сквозной коммутации, потом те порты, на которых возникает много ошибок, переводятся в режим безфрагментной коммутации. Если и при этом количество ошибок остается неприемлемо большим, то порт переводится в режим коммутации с буферизацией, что гарантирует полную фильтрацию от ошибочных кадров.
1.2.1 Типы функциональных схем коммутаторов
На сегодняшний день используется 3 типа схем:
- коммутационная матрица
- с общей шиной
- с разделяемой многовходовой памятью
Коммутаторы с коммутационной матрицей обеспечивают самый быстрый способ коммутации портов. Однако число портов в таких коммутаторах ограничено, так как сложность схемы возрастает пропорционально квадрату числа портов. Конструктивно матрица может быть выполнена на основе различных комбинационных схем, реализованных в виде ASIC-микросхем, но независимо от способа реализации в ее основе лежит физическая коммутация каналов связи. На рис. 4 показана схема коммутационной матрицы.
Основным недостатком данной технологии является невозможность буферизации кадров в самой коммутационной матрице. Из приведенного выше примера ясно, что основным фактором, определяющим пропускную способность такого коммутатора, является буферизация кадров, без которой кадры могут быть просто потеряны. Однако увеличение объема буфера порта приводит к большей задержке передачи кадра, что противоречит основной цели коммутаторов — повышению производительности.
В коммутаторах с общей шиной (см. схему) процессоры портов связываются между собой высокоскоростной шиной. Связь портов через такую шину происходит в режиме разделения времени. Для того чтобы такой коммутатор мог работать в неблокирующем режиме, производительность общей шины, то есть ее пропускная способность, должна быть не ниже совокупной производительности всех портов коммутатора. Передача данных по такой шине происходит не кадрами, а более мелкими порциями, размер которых зависит от производителя. Для этого процессор передающего порта разбивает кадр на более мелкие порции, прибавляя к каждой из них адрес порта назначения (тэг адреса). Процессоры выходных портов содержат фильтры тэгов, что позволяет им выбирать предназначенные им данные. В схемы с общей шиной, так же как и в схеме с коммутационной матрицей, невозможно осуществить промежуточную буферизацию кадров.