Типы саморегуляции кровообращения как критерии адаптационных возможностей организма спортсмена к физическим нагрузкам различного характераРефераты >> Физкультура и спорт >> Типы саморегуляции кровообращения как критерии адаптационных возможностей организма спортсмена к физическим нагрузкам различного характера
2)прессорецепторные рефлекторные механизмы;
3)хеморецепторные рефлекторные механизмы;
4)гормональный контроль, в основном с участием катехоламинов.
Центральная регуляция сосудодвигательного центрапродолговатого мозга со стороны высших центров головного мозга проявляется прежде всего в изменениях в системе кровообращения, которые происходят еще до начала мышечной работы: учащении ЧСС, повышении АД, усилении мышечного кровотока и т.д. В опытах на животных электрическая стимуляция ряда областей головного мозга – моторной коры, центров промежуточного мозга (в частности, гипоталамуса) – вызывает увеличение частоты и силы сердечных сокращений, расширение сосудов скелетных мышц и сердца, сужение сосудов во многих областях тела, повышение АД.
Прессорецепторные рефлекторные механизмыфункционируют во время мышечной работы, вероятно, иначе, чем в условиях покоя. Раньше существовала точка зрения о том, что в самом начале работы АД снижается из-за быстрого расширения мышечных сосудов, что запускает прессорецепторные рефлексы, способствующие повышению АД. Однако кратковременное снижение АД наблюдается лишь иногда при переходе от покоя к легкой мышечной работе, но в начале тяжелой или при переходе от более легкой к более тяжелой работе всегда происходит быстрое повышение систолического и пульсового давлений. Начальный период быстрого повышения АД продолжается 1–2 мин, после чего достигается и поддерживается постоянное повышенное по сравнению с условиями покоя АД. Только в процессе выполнения очень продолжительной работы АД медленно снижается.
Хеморецепторные рефлекторные механизмыдолжны, по-видимому, играть важную роль при мышечной работе. Напомним, что периферические сосудистые хеморецепторы расположены в артериальной части системы кровообращения, а центральные хеморецепторы также «омываются» артериальной кровью. Это означает, что эти рецепторы получают информацию о химическом составе артериальной крови.
Напряжение СО2 в артериальной крови может значительно колебаться во время работы, но в среднем оно заметно не меняется или даже несколько снижается при очень напряженной мышечной работе. Поэтому мало вероятно, что рСО2 в артериальной крови служит определяющим стимулом для регуляции кровообращения при мышечной работе.
Напряжение О2 в артериальной крови также вряд ли является активным стимулом для регуляции кровообращения. Прежде всего рО2 артериальной крови изменяется мало, и только при очень напряженной работе. Кроме того, опыты с дыханием газовой смесью с пониженным содержанием кислорода во время мышечной работы показывают, что сердечный выброс и АД изменяются при этом незначительно. Следовательно, действие на сосудистые хеморецепторы сниженного рО2 в артериальной крови не вызывает значительных изменений в циркуляции во время мышечной работы.
Только лактат и некоторые другие метаболиты, которые не удаляются с выдыхаемым воздухом, могут содержаться в артериальной крови в повышенном количестве и активировать артериальные хеморецепторы. Однако содержание лактата в артериальной крови значительно увеличивается только при тяжелой мышечной работе. Одна из гипотез предполагает, что некоторые пока неидентифициро-ванные метаболиты, не удаляемые из крови в легких, могут быть стимулами для артериальных и центральных хеморецепторов. Другая гипотеза состоит в том, что в мышцах имеются хеморецепторы, которые активируются локальными метаболическими изменениями, происходящими во время работы. Стимуляция мышечных хеморецепторов вызывает, в частности, рефлекторное сокращение чревных и почечных сосудов. Эта гипотеза привлекательна тем, что она позволяет объяснить тесную связь между локальными метаболическими запросами и кровоснабжением мышц во время работы.
Гормональные влиянияиграют лишь незначительную роль в регуляции деятельности сердечнососудистой системы при мышечной работе.
Кровообращение в зонах относительной мощности.
Первая зона – работа максимальной мощности.
Процессы дыхания и кровообращения при максимальной мощности работы усилены незначительно. Практически во время спринтерского бега осуществляется лишь несколько поверхностных дыхательных движений. Сердце за этот малый отрезок времени несколько увеличивает частоту своих сокращений, но систолический объем возрастает незначительно, чему соответствует сравнительно малое увеличение минутного объема кровообращения.
Вследствие небольшой продолжительности работы невелико поступление в кровь образовавшихся в мышцах продуктов анаэробного распада. Существенных изменений в морфологическом составе крови также не происходит.
Вторая зона – работа субмаксимальной мощности. Резко усиливаются дыхание и кровообращение. Это обеспечивает увеличение количества кислорода, притекающего с кровью к мышцам. Потребление кислорода непрерывно возрастает, но максимальных величин оно достигает обычно почти в конце работы. Образующийся кислородный долг очень велик – он значительно больше, чем после работы максимальной мощности, что объясняется продолжительностью работы. Потребляемый после работы кислород идет на окислительный ресинтез как АТФ и КФ, так и углеводов. Величина кислородного долга может достигать 20 л.
Третья зона – работа большой мощности.
Она характеризуется длительностью не менее 3–5 мин. и не более 20–30 мин. Здесь уже вполне достаточно времени для того, чтобы дыхание и кровообращение могли усилиться в полной мере. Поэтому работа, выполняемая через несколько минут после старта, происходит при потреблении кислорода, близком к максимально возможному. Вместе с тем кислородный запрос при такой работе больше, чем возможное потребление кислорода. Интенсивность анаэробных процессов превышает интенсивность аэробных реакций. В связи с этим в мышцах накапливаются продукты анаэробного распада и происходит образование кислородного долга. Кислород используется теперь главным образом на ресинтез углеводов.
Четвертая зона – работа умеренной мощности. Она может продолжаться свыше 20–30 мин. Особенностью, отличающей зону умеренной мощности от всех трех вышеперечисленных зон, является наличие устойчивого состояния, впервые описанного А. Хиллом. Под устойчивым состоянием понимается равенство величин кислородного запроса и потребления кислорода в единицу времени. Лишь в начале работы кислородный запрос превышает потребление кислорода. Однако уже через несколько минут потребление кислорода достигает уровня кислородного запроса. Кислород, потребляемый, мышцами во время работы, используется двояко: одна часть идет на окислительный ресинтез АТФ, КФ и углеводов, а другая – на непосредственное окисление жиров и углеводов. Накопление молочной кислоты при истинном устойчивом состоянии отсутствует или же невелико. Вследствие этого при работах умеренной мощности содержание молочной кислоты в крови практически почти не увеличивается. Кислотность крови и ее газовый состав остаются в норме. Функции дыхания и кровообращения при спортивных напряжениях умеренной мощности увеличены сильно, однако не максимально. Уровень потребления кислорода может достигать примерно 85% от максимального.