Нильс Бор

Первым результатом напряженной работы стал принцип “Запрета Паули” который утверждал, что в определенном квантовом состоянии может находиться не более 1-го электрона. Этот принцип сразу пролил свет на теорию строения атома и на периодичность химических и физических свойств элементов. За этот принцип Паули была присуждена Нобелевская премия мира, правда в последствии - за 1946 год. Последующие два года 1922-1924 года длились в мучительных поисках решения проблем квантования, в течение которых у Бора было два приятных события:

1-ое у него родился четвертый сын (всего их было 5)

2-ое: Кембриджское философское общество приняло его в свои члены.

Осенью 1924 года началось то, чего ученый мир ждал с надеждой и тревогой. Сложность квантовой теории достигла предела, ее буквально разрывали внутренние противоречия. И вот в институте Бора появляется человек, который раньше не занимался проблемами атома, но лишь вступив в стены Института сразу же взялся за работу. Это был Гейзенберг. Его гениальность проявилась в том, что он предложил заменить все ненаблюдаемые величины для электрона (координаты, скорость, частоту обращения) наблюдаемыми, которые можно измерять в непосредственном эксперименте (частота спектральных линий, интенсивность) - так называемый “Гейзенберговский формализм”. Идею Гейзенберга подхватил Борн и пришел к выводу, что “Гейзенберговский формализм идентичен матричному исчислению, хорошо известному в математике. В результате совместных действий Гезенберга, Борна и Иордана была создана матричная механика. Последний шаг в решении проблем квантования сделал Шредингер. Введенные им собственные значения, а также рассмотрение электрона не как частицы, а как распределение плотности вероятности привели Бора в глубокое волнение. Взволновался он потому, что поначалу казалось, что волновая механика Шредингера и матричная Гейзенберга несовместимы. Однако все закончилось благополучно. Гейзенберг сформулировал свое соотношение неопределенностей, а Шредингер записав впервые свое волновое уравнение заложил основы для создания совершенно новой науки - квантовой механики. Как только были описаны все основы нового направления все стало на свои места. Теперь легко объяснялись правила квантования, принцип запрета Паули, периодическая система элементов Д.И. Менделеева.

В 1927 году в Италии в г. Комо состоялся Международный физический конгресс. На конгрессе главным был доклад Бора на тему “Квантовый постулат и новейшее развитие атомной теории”. В своем докладе Бор сформулировал принцип, который смог ответить на все вопросы, которые в то время стояли перед теорией атома. Это был принцип дополнительности, который гласил, что любой предмет может проявлять себя как частица, так и как волна. Этот принцип сразу вошел в обиход физических понятий, и применялся не только в физике, но и в других науках.

Сейчас можно с уверенностью сказать, что наука которая была создана всего за два с половиной года в корне изменила наше миропонимание. Оказалось, что исходя из принципа неопределенности невозможно однозначно предсказать исход опыта, а лишь можно судить о вероятности того или иного результата. Новая теория вызывала много возражений. Многие ученые так и не приняли ее: это были Луи де Бройль, Шредингер, Планк, Лауэ, Эйнштейн. Официальные творцы квантовой механики: Гейзенберг, Дирак, Борн, Шредингер. И, хотя имя Бора не упоминается, все признают, что именно в “копенгагенском котле”, которым управлял Бор была сварена новая наука. И именно Бора следует считать творцом квантового мировоззрения.

БОР И СЕМЬЯ.

Заслуга Бора в науке несомненно была грандиозная. Однако раскрылся он не только как талантливый ученой, организатор, но и как прекрасный семьянин и отец. К людям и к жизни Бор был не менее любознателен, чем к проблемам науки. С детьми он был ласков и добр и постоянно, как и его отец, Христиан Бор, приучал их к труду. Семья у него была не маленькая: пять сыновей и одна дочь. Дети сами вспоминали потом, что для них отец в первую очередь являлся лучшим другом, который открывал перед ними большой и интересный мир. “Больше всего, - пишет Ханс Бор, - в моей памяти остались вечера, когда отец читал вслух или мы, дети, собирались вокруг него и засыпали кучей вопросов, на которые он с удовольствием отвечал.

Бор никогда не работал по графику. Он мог думать о работе и в праздники, и во время лыжных прогулок и даже ночью. Обладая огромной работоспособностью, он тем самым вынуждал своих ассистентов выдерживать большие нагрузки, для обеспечения нормальной работы шефа. Тяжело было также потому, что у Бора не получалось одновременно думать и писать, отсюда его помощники писали под диктовку его статьи, которые по много раз переписывались и корректировали. Интересно также понимание Бором проблем психологии. Дирак вспоминал: “Как-то раз на прогулке Бор обратил внимание на то, что когда он ударяет своей тростью по земле, то кажется что чувство осязания находится не в руке, а на конце палки. Тут же он провел аналогию с мозгом человека, который подобно руке настраивается с помощью фактов и органов чувств на анализ воспринимаемой информации”.

В ГЛУБЬ ЯДРА.

Что же происходило в квантовой науке в предвоенные годы? В 1930 году Бор прочитает лекцию в Лондонском химическом обществе, в которой говорит весьма пророческие слова: “ .в атомной теории, несмотря на достигнутые успехи, мы должны быть готовы к новым сюрпризам ”. И сюрприз не заставил себя ждать. Началось интенсивное исследования атомного ядра, которое привело к рождению ядерной физики. Уже в 1930 году была предложена протонно-нейтронная модель ядра, позже Ферми обнаруживает нейтрино, а дальше буквально обрушивается поток новых открытий. 1934 год Кюри открывают искусственную радиоактивность, Юкава вводит идею о мезонах, Ферми регистрирует искусственную радиоактивность при бомбардировке тяжелых элементов нейтронами. Копенгагенский институт больше не мог оставаться в стороне от проблем ядра. Датчанами было собрано 100 тысяч крон на которые купили 0,6 грамма радия и подарили Институту теоретической физики на 50-летие Бора. В 1938 году в институте был построен I-ый циклотрон в Европе. Как только начались опыты по бомбардировке тяжелых ядер, как только стали поступать результаты опытов от Ферми, Жолио-Кюри, Фриша в атмосферу физики был запущен дух предчувствия открытия. Бор писал: “Все были полны предчувствия, что физика стоит на пороге новой эры”. В 1939 году у Бора собрались Метнер, Фриш, Плачек и Розенфельд. В результате обсуждения данных проведенных экспериментов они делают вывод: “Столкновение нейтрона и ядра может привести к взрыву всего ядра с большим выделением энергии. Однако использование этой энергии в практических целях стоит под большим вопросом”. Их прогноз оказался ошибочным. Уже в марте этого же года Энрико Ферми докладывал правительству США о том, что создание атомного оружия является задачей осуществимой, при условии если U235, которого в U238 1% будет отделен от последнего. Достижения ядерной физики были очень опасными и сразу перешли в разряд сверхсекретных.


Страница: