Технология ферментных препаратов
В качестве неорганических источников азота используются различные соли азотной кислоты и аммонийные соли. При выборе источника неорганического азота следует прежде всего обращать внимание на физиологическое воздействие аниона или катиона при избирательном потреблении азота. Изменение рН среды, т. е. ее подщелачивание в случае потребления аниона или подкисление при утилизации катиона может вызвать значительные изменения в биосинтетической деятельности микроорганизма. Не меньшее значение имеет концентрация минерального источника азота (особенно на биосинтез протеиназ). Соли (NH4)2НРО4 при концентрации 0,9% более чем в 5 раз повышают биосинтетическую деятельность бактерий.
По данным многих исследователей, добавление органических источников азота во многих случаях является более эффективным, чем только неорганических, а совместное введение в среду азота солей и органических соединений может привести к их синергическому действию. А дополнительное введение в среду органического азота в виде кукурузного экстракта и пивных дрожжей способствует увеличению биосинтетической активности более чем в 12 раз. Однако единой рекомендации по составлению сред дать невозможно и необходимо экспериментальное определение состава среды для каждого продуцента.
Соотношение углерода и азота в среде имеет большое значение для биосинтеза ферментов, т. е. сбалансированность питательной среды по углероду и азоту. Дефицит одного из этих компонентов в среде не может быть компенсирован избытком другого.
Источники фосфора. Фосфор вносится в среду в виде солей фосфорной кислоты, реже – в виде органических соединений, например фитина. Фосфор может быть введен в среду с различными естественными субстратами: отварами растительных тканей, мукой, кукурузным экстрактом и т. д. Фосфор является очень важным элементом питательной среды; он входит в состав АТФ, АДФ, АМФ, которые обеспечивают энергетический обмен в клетке, а также осуществление главнейших биосинтетических процессов (синтез белков, нуклеиновых кислот, гликолиз и другие биохимические превращения). Фосфор интенсивно потребляется из среды в логарифмической фазе роста культуры, что соответствует наиболее интенсивному течению биосинтетических процессов и образованию клеточного вещества. Обычно в этот период роста в биомассу из среды переходит до 83-91% фосфора. Потребность культуры в фосфоре можно приблизительно определить путем анализа золы микробной массы продуцента.
Фосфор стимулирует биосинтез протеаз, амилаз, пектолитических ферментов. Наилучшие результаты получаются, если фосфор дополнительно вносится в виде солей фосфорной кислоты (одно- и двузамещенных солей натрия, калия и аммония) в среды, содержащие естественные растительные отвары, содержащие фосфор.
Без витаминов, ростовых веществ, ионов металлов обмен веществ в микробной клетке маловероятен. Но не все микроорганизмы требуют введения этих соединений в среду и в зависимости от этого микроорганизмы делятся на два типа: ауксоавтотрофы, не требующие введения в среду витаминов и синтезирующие их самостоятельно. Витамины не влияют на их рост и развитие. И ауксогетеротрофы, неспособные синтезировать ряд витаминов и требующие их обязательного введения в состав среды. Введение даже небольших количеств ростовых веществ заметно ускоряет их рост и развитие. К сожалению, многие продуценты являются ауксогетеротрофными и для них требуется наличие в среде комплекса витаминов группы В, т. е. биотина, инозита, пантотеновой кислоты, тиамина, пиридоксина и других, участвующих в процессах биосинтеза ферментов.
Биотин участвует в реакциях превращения аминокислот, входит в активный центр ряда ферментов, катализирующих процесс карбоксилирования и декарбоксилирования жирных кислот. Инозит, соединяясь с шестью молекулами фосфорной кислоты, образует инозитфосфорную кислоту, способствующую росту дрожжей. Пантотеновая кислота входит в состав КоА, при участии которого происходят важнейшие превращения в клетке.
Источником витаминов и ростовых веществ в питательных средах обычно являются микробные массы и различные растительные отходы, входящие в состав сред. Наиболее богатыми источниками этих соединений являются автолизаты микробных масс, в настоящее время для этих целей часто используют кормовые дрожжи, плазмолизированные или подвегнутые кислотному или ферментативному гидролизу. Богаты витаминами и ростовыми веществами кукурузный экстракт, спиртовая барда, отвары муки, выжимки плодов и овощей. Но так как эти компоненты среды служат одновременно источниками углерода, азота, фосфора и их количество в среде чаще всего определяется именно этими элементами, содержание витаминов и ростовых веществ в средах бывает достаточным и не требуется их дополнительного введения. Если же среда для культивирования используется синтетическая, то возникает необходимость специального исследования по выявлению потребности продуцента в этих соединениях.
Макро- и микроэлементы являются неотъемлемой частью состава питательных сред. Многие ионы металлов входят в активный центр ферментов или участвуют в поддержании пространственной структуры ферментов и обеспечивают энзиматическую деятельность организма, обмен веществ в нем. Более четверти известных в настоящее время ферментов относятся к металлоферментам. Они активируют процессы дыхания, окислительно-восстановительные реакции, синтез аминокислот, жирных кислот, сахаров, нуклеотидов, пиримидиновых оснований, регулируют образование биполярных молекул белков, гликогена, нуклеиновых кислот, их трансформацию и распад.
Все металлоферменты делятся на две группы. К первой относятся истинные металлоферменты с прочной связью между ионами металла и белковой частью, не разрушаемой при пропускании через иониты. Вторая группа характеризуется тем, что ион металла легко отщепляется при диализе или при другой обработке раствора от белковой части фермента с потерей каталитических свойств. При добавлении металла ферменты данной группы вновь активируются.
В окислительно-восстановительных процессах участвуют ферменты, требующие присутствия железа, меди, марганца, цинка, бора и молибдена. Активность дыхания и интенсивность расщепления органических субстратов зависят от специфической активации ферментов тем или другим металлом. Таким образом, металлы и их комплексные соединения являются не случайными примесями, а биологически важными компонентами. Микроэлементы могут регулировать обменные процессы в организме и изменять направление ферментативных реакций. Синтез аминокислот катализируют ферменты, на которые влияют марганец, молибден, железо, кобальт; белки синтезируются при участии молибдена, цинка, меди, бора; на синтез липидов влияет наличие бора, меди, марганца, кобальта.
Зависимость потребности в микроэлементах от скорости роста микроорганизмов и от образования ими ферментов установить трудно, так как количества микроэлементов, в которых нуждаются микроорганизмы, очень малы. О потребности в микроэлементах для биосинтеза клеточного вещества судят на основании анализа состава золы биомассы микроорганизма.