Общие принципы технологии криогенного охлаждения мяса индейки
Рефераты >> Кулинария >> Общие принципы технологии криогенного охлаждения мяса индейки

Глютатион является сильным восстановителем и, подобно цистеину, легко подвергается окислению. В живых тканях глютатион в основном находится в восстановленной форме и по мере необходимости переходит в окисленную форму

Глютатиону, очевидно, принадлежит особая роль в поддержании окис-

лительно-восстановительного потенциала мышечной клетки и активации ферментов, содержащих в активном центре SH-группы.

Креатин. По строению является метилгуанидинуксусной кислотой

Аминокислотный состав белков индейки первой категории представлен в таблице 5.

Таблица 5

Аминокислоты, мг в 100 г продукта (20)

Показатель

Количество

Показатель

Количество

Белок, %

Незаменимые аминокислоты

В том числе:

Валин

Изолейцин

Лейцин

Лизин

Метионин

Треонин

Тирозин

Триптофан

Фенилаланин

Цистеин

Заменимые аминокислоты  

19,5

7620

930

963

1587

1636

497

875

616

329

803

121

11834

В том числе:

Аланин

Аргинин

Аспарагиновая кислота

Гистидин

Глицин

Глут. к-та

Оксипролин

Пролин

Серин

Общее количество

Лимитирующая

аминокислота,

Скор, %  

1218

1168

2007

540

1137

3280

181

831

735

19454

нет

Жирнокислотный состав липидов

При оценке пищевой ценности продукта большое значение придается содержанию липидов и особенно незаменимых жирных кислот, которые не могут синтезироваться в организме человека (линолевая, линоленовая, арахи-

доновая).

Биологическая ценность жиров характеризуется коэффициентом эффективной метаболизации (КЭМ), представляющим собой отношение концентрации содержания арахидоновой кислоты (С20:4) к сумме всех других полиненасыщенных кислот с 20 и 22 углеродными атомами, следующим об-

разом:

КЭМ = С20:4/(С20:2 + С20:3 + С20:5 + С22:5 + С22:6)

Липиды мяса птицы представлены в таблице 6.

Таблица 6

Липиды, г в 100 г продукта(20).

Сумма липидов

триглицериды

фосфолипиды

холистерин

Жирные кислоты (сумма)

Насыщенные

В том числе:

С12:0 лауриновая

С14:0 миристиновая

С15:0 пентадекановая

С16:0 пальмитиновая

С17:0 маргариновая

С18:0 стеариновая

22,00

16,06

4,40

0,21

18,35

5,82

0,02

0,23

0,03

4,1

0,07

1,35

С20:0 арахиновая

Мононенасыщенные

В том числе:

С14:1 миристолеиновая

С16:1 пальмитолеиновая

С17:1 гептадеценовая

С18:1 олеиновая

С20:0 гадолеиновая

Полиненасыщенные

В том числе:

С18:2 линолевая

С18:3 линоленовая

С20:4 арахидоновая

0,02

8,46

0

1,78

0,05

6,42

0,21

4,07

3,88

0,15

0,04

Так как многие полиненасыщенные кислоты, необходимые для расчета коэффициента отсутствуют, то подсчитаем его для полосатого тунца:

С20:2 = 6,520 С20:5 = 5,160

С20:3 = 1,360 С22:5 = 5,940

С20:4 = 0,420 С22:6 = 15,54

КЭМ = 0,420/34,560 = 0,012 (16)

Липиды, входящие в состав мышечных волокон, выполняют функции двоякого рода. Часть их, главным образом фосфолипиды, является пласти-

ческим материалом и входит в структурные элементы мышечного волокна – миофибриллы, клеточные мембраны, прослойки гранул.

В состав миофибрилл входят различные глицерофосфолипиды, многие из них способствуют проявлению активности ряда ферментов. Особенно большим содержанием фосфолипидов отличается саркоплазматический рети-

кулум и сарколеммные мембраны. Однако общее содержание фосфолипидов в сарколеммной мембране значительно ниже, чем в митохондриях, причем качественный состав их в ней не отличается от состава субклеточных структур.

Другая часть липидов выполняет роль резервного энергетического материала, такие липиды содержатся в саркоплазме в виде мелких капелек на полюсах митохондрий. В большом количестве липиды содержатся в межклеточных пространствах, между пучками мышц в соединительных прослойках (13).

Состав углеводов

Одним из основных углеводов мышечной ткани является гликоген – важнейший энергетический материал. он расходуется при мышечной работе и накапливается при отдыхе. Содержание его зависит от тренированности и упитанности птицы, а также физиологического состояния.

Мышечный гликоген представляет собой сильно разветвленный поли-

сахарид, построенный из сотен молекул a-глюкозы. молекулярная масса его равна 1*10^6. Большая степень разветвленности мышечного гликогена необ-

ходима, поскольку действию ферментов подвергаются концы молекулы; чем больше свободных концов, тем быстрее может быть использована молекула гликогена или быстрее может быть заново синтезирована во время таких периодов клеточного метаболизма, когда происходит его регенерация. В пе-

риод распада молекул гликогена наряду с последовательным разрушением его боковых цепей под действием эндоамилаз происходит и образование его частей – «затравок», которые также могут затем расти за счет присоединения глюкозы. Мышечная ткань отличается высокой концентрацией ферментов и факторов системы, синтезирующей гликоген.

В мышечных волокнах обнаруживается определенная связь гликогена с миофибриллами. Наблюдается локализация гликогена у анизотропных дис-

ков и он не обнаруживается в изотропных. Кроме того, гликоген более или менее равномерно распределен в саркоплазме ( с преобладанием в около-

ядерной саркоплазме). Возможно, что связь гликогена с миозином анизотропных дисков миофибрилл и миогеном саркоплазмы обеспечивает необходимый темп расщепления полисахарида при его гликолитическом рас-

паде. В этих превращениях более лабильной является фракция легкораство-

римого гликогена. Наряду с этим труднорастворимый гликоген метаболичес-

ки не инертен и является резервом, находящимся в состоянии непрерывного обновления.

В процессе интенсивной мышечной работы гликоген подвергается ана-

эробному гликолитическому распаду с образованием молочной кислоты. В процессе превращения гликогена образуются фосфорные эфиры гексоз и триоз, пировиногралная кислота и другие продукты распада, однако количес-


Страница: