Изменение белков и других азотистых веществ при тепловой обработке мяса, рыбы и блюд из них
Креатин и креатинин в мясе рыб содержатся в сравнительно небольших количествах. В мясе морских рыб из веществ этой группы обнаружен метилгуанидин, которого нет в мясе пресноводных рыб и теплокровных животных. Метилгуанидин в больших концентрациях токсичен.
В мясе большинства рыб содержится мало пуриновых оснований, производных имидазола и холина. Так, карнозина в мясе пресноводных рыб содержится 3 мг/100 г, а в говядине — 300 мг/100 г, холина — соответственно 2,5 и ПО мг/100 г.
В составе экстрактивных веществ мяса рыб содержатся значительные количества азотистых оснований. Они подразделяются на летучие и триметиламмониевые. Среди летучих оснований преобладают моно-, ди- и триметиламин и аммиак. В свежевыловленной морской рыбе триметиламина содержится 2 .2.5 мг/100 г, в пресноводной — 0.5 мг/100 г. Аммиака в морской рыбе содержится 3 .9 мг/100 г, в пресноводной — до 0,05 мг/100 г. При хранении охлажденной рыбы под действием микроорганизмов количество летучих оснований в мясе рыб может возрастать. Среди триметиламмониевых оснований преобладают триметиламиноксид и бетаины, в морской рыбе они содержатся в количествах соответственно 100 .1080 и 100 . 150 мг/100 г.
При варке на переход экстрактивных и минеральных веществ из рыбы в бульон оказывают влияние не только денатурация мышечных белков и их постденатурационные изменения, но и диффузия. Количество растворимых веществ, переходящих из рыбы 1 в бульон в результате диффузии, зависит от гидромодуля. В связи с этим порционные куски рыбы ценных пород обычно готовят припусканием с добавлением жидкости в количестве, не превышающем 30 % к массе рыбы. Образующийся при этом бульон используют для приготовления соусов.
В рыбных бульонах содержится в среднем 28 % экстрактивных и 24 % минеральных веществ. 48 % глютина. В бульонах, приготовляемых из рыбных отходов (голов, плавников, костей, кожи), содержание экстрактивных веществ не превышает 4 %, минеральных — 11%. Остальная часть сухого остатка бульона состоит из глютина (74 %) и эмульгированного жира. Существенные различия в составе бульонов из рыбы и рыбных отходов объясняются тем, что экстрактивные и минеральные вещества сосредоточены в основном в мышечных волокнах. Минеральные вещества костей представлены нерастворимыми в воде фосфатами и карбонатами кальция.
По качественному составу азотистых экстрактивных веществ рыбные бульоны существенно отличаются от мясных. В рыбных бульонах преобладают циклические (гистидин, триптофан, фенилаланин) и серосодержащие (цистин, цистеин, метионин, таурин) свободные аминокислоты. В бульонах из океанических рыб содержится метилгуанидин — сильное основание, в больших концентрациях оказывающее токсическое действие на живые организмы. К особенностям рыбных бульонов относится содержание в них значительных количеств аминов, среди которых важная роль принадлежит метиламинам и гистамину.
Содержащийся в мясе рыб креатин при тепловой кулинарной обработке частично превращается в креатинин, который вступает в химические реакции с продуктами карбониламинных реакций, свободными аминокислотами и сахарами с образованием гетероциклических ароматических аминов, обладающих сильным мутагенным и канцерогенным действием на живые организмы. В мясе беспозвоночных, не содержащем креатина, при тепловой кулинарной обработке гетероциклические ароматические амины не образуются.
Динамика выделения воды мясом крупного рогатого скота и рыбы при одних и тех же параметрах тепловой кулинарной обработки выглядит по-разному. В интервале температур 45 .75°С обезвоживание говядины и мяса рыбы идет интенсивно, причем в говядине — более быстрыми темпами. При температурах выше 75°С потери рыбой воды прекращаются, в то время как говядина теряет воду вплоть до достижения температуры 90 .95°С, что указывает на более низкие температурные границы денатурации и свертывания белков рыбы по сравнению с мышечными белками теплокровных животных.
Сравнительно небольшие потери воды мясом рыб при тепловой кулинарной обработке объясняются особенностями его химического состава и гистологического строения: высоким содержанием белков актомиозинового комплекса в миофибриллах мышечных волокон; простым строением перимизия мышц; сравнительно низкой температурой денатурации и деструкции коллагена внутримышечной соединительной ткани. Тепловая денатурация мышечных белков сопровождается слабой их дегидратацией. Вода, отделяемая белковыми гелями мышечных волокон и поступающая в пространство между пучками мышечных волокон, слабо выпрессовывается в окружающее пространство из-за незначительной деформации внутримышечных соединительнотканных образований мышц рыбы и сравнительно быстрой желатинизации коллагена. В результате этого мясо рыб при тепловой обработке теряет не более 25 % содержащейся в ней воды.
При варке, жарке и при СВЧ-нагреве потери массы рыбы практически одинаковые. При жарке рыбы ИК-лучами потери массы снижаются на 4 .5 % благодаря повышенной проникающей способности инфракрасного излучения и сокращению продолжительности тепловой обработки.
Исследования белков мышечной ткани сырой и подвергнутой тепловой кулинарной обработке рыбы показало, что изменения направлены на значительное уменьшение растворимости миофибриллярных белков по сравнению с белками саркоплазмы, возрастание в 3 .3,5 раза количества денатурированных белков и азотистых растворимых веществ, в том числе белковой природы, в связи с переходом коллагена в глютин.
4 Влияние процессов изменения белков и других азотистых веществ на качество кулинарной продукции из мяса и рыбы
Тепловая денатурация белков оказывает большое влияние на качество готовой продукции. При прочих равных условиях реологические характеристики белковых гелей, подвергнутых нагреванию, зависят от рН среды, температуры и продолжительности теплового воздействия.
При значениях рН среды, близких к изоэлектрической точке белка, денатурация происходит при более низкой температуре и сопровождается максимальной дегидратацией белка. Смещение рН среды в ту или иную сторону от изоэлектрической точки белка способствует повышению его термостабильности. Так, выделенный из мышечной ткани рыб глобулин X, имеющий изоэлектрическую точку при рН 6, в слабокислой среде (рН 6,5) денатурирует при 50°С, а в нейтральной (рН 7,0) — при 80°С.
Активная кислотность среды оказывает большое влияние на гидратацию и денатурацию белков, поэтому в технологии производства продуктов общественного питания направленное изменение реакции среды широко используют для улучшения качества блюд и кулинарных изделий. Так, при припускании мяса, птицы, рыбы и нерыбных продуктов моря, тушении мяса птицы, рыбы, мариновании мяса (перед жаркой) путем добавления приправ, содержащих кислоту, создают более кислую среду со значениями рН, лежащими значительно ниже изоэлектрической точки белков продукта. В этих условиях при тепловой обработке дегидратация белковых гелей уменьшается, и готовый продукт получается более сочным.
В кислой среде деструкция коллагена ускоряется, вследствие чего сокращается продолжительность тепловой обработки, а готовый продукт становится более нежным. Хорошее качество кулинарной продукции достигается при использовании лимонного сока или сухого виноградного вина, смешанных с водой в соотношении 1:1. При мариновании мясных и рыбных полуфабрикатов указанную смесь используют в количестве 5 .10% к массе сырья, а при припускании и тушении — до 30%. При замене натуральных продуктов кристаллической кислотой (лимонной или винной) используют 0.3%-ный водный раствор этих кислот. Кислая среда ускоряет деструкцию коллагена и способствует получению сочных мясных и рыбных продуктов благодаря их меньшему обезвоживанию.