Изменение белков и других азотистых веществ при тепловой обработке мяса, рыбы и блюд из них
Рефераты >> Кулинария >> Изменение белков и других азотистых веществ при тепловой обработке мяса, рыбы и блюд из них

Скорость агрегирования золей белка зависит от рН среды. Менее устойчивы белки вблизи изоэлектрической точки. Для улучшения качества блюд и кулинарных изделий широко используют направленное изменение реакции среды. Так, при мариновании мяса, птицы, рыбы перед жаркой; добавлении ли­монной кислоты или белого сухого вина при припускании рыбы, цыплят; использовании томатного пюре при тушении мяса, создают кислую среду со значениями рН значительно ниже изоэлектрической точки белков продукта. Благодаря меньшей дегидратации белков изделия получаются более сочными.

Фибриллярные белки денатурируют иначе: связи, кото­рые удерживали спирали их полипептидных цепей, разрыва­ются, и фибрилла (нить) белка сокращается в длину. Так дена­турируют белки соединительной ткани мяса и рыбы.

1.5 Пенообразование

Белки в качестве пенообразователей широко используют при производстве кондитерских изделий (тесто бисквитное, белково-взбивное), взбивании сливок, сме­таны, яиц и др. Устойчивость пены зависит от природы белка, его концентрации, а также температуры.

Важны и другие технологические свойства белков. Так, их используют в качестве эмульгаторов при производстве белково-жировых эмульсий, как наполнители для различных напитков. Напитки, обогащенные белковыми гидролизатами (например, соевыми), обладают низкой калорий­ностью и могут храниться длительное время даже при высо­кой температуре без добавления консервантов. Белки способны связывать вкусовые и ароматические вещества. Этот процесс обусловливается как химической природой этих веществ, так и поверхностными свойствами белковой молекулы, факторами окружающей среды. При длительном хранении происходит «старение» белков, при этом снижается их способность к гидратации, удлиняются сроки тепловой обработки, затрудняется разваривание продукта (например, варка бобовых после длительного хранения). При нагревании с восстанавливающими сахарами белки образуют меланоидины.

2 Влияние способов и режимов тепловой обработки мяса и мясопродуктов на изменениеих физико-химических показателей и биологической ценности

2.1 Изменение белков мяса в процессе нагрева

Белковая молекула при нагреве подвергается сложным физи­ко-химическим изменениям, прежде всего денатурации и коагу­ляции, глубина которых зависит от температуры, продолжитель­ности тепловой обработки и некоторых других факторов. При изучении всех классов белков необходимо установить уровни ор­ганизации их макромолекулярной структуры. Эти уровни принято именовать первичной, вторичной, третичной и четвертичной структурами белка. Под первичной структурой понимают вид, число и после­довательность соединения аминокислотных остатков в полипеп­тидной цепи белка, под вторичной — взаимосвязь и характер спирализации полипептидных цепей, под третичной — законо­мерное свертывание цепей, обладающих вторичной структурой в макромолекуле, под четвертичной — агрегацию макромолекул.

Любое изменение, рассматриваемое как взаимодействие бел­ков друг с другом, предполагает предварительное разрушение этих связей, которыми они удерживаются в системе, и замену их другими. Образование новых случайных структур в сложных бел­ковых системах представляется как следствие замены лабильных связей между белковыми частицами более стабильными связя­ми. Если воздействие тех или иных факторов приводит к разру­шению третичной или четвертичной стриктуры, то ослабляется защитное действие гидратационных слоев вблизи полярных группировок и образование новых более прочных структур ста­новится неизбежным. Уменьшение гидрофильной и увеличение гидрофобной способности и, следовательно, снижение защит­ного (стабилизирующего) действия гидратационных слоев вбли­зи полярных группировок происходят в результате внутримоле­кулярной перестройки белковой молекулы при денатурации. В этих условиях происходит агрегирование белковых частиц за счет межмолекулярных сил и коагуляция белка.

В свете подобных представлений рассмотрим вопрос о сущ­ности и механизме денатурации белков. Денатурация, — это любая модификация вторичной, третичной или четвертичной структуры белковой молекулы, за исключени­ем разрыва ковалентных связей.

2.2 Влияние температуры и способа нагрева на скорость и температуру денатурации белков

Скорость тепловой денатурации зависит от температуры, влажности, способа нагрева и других факторов.

Денатурация тормозится при добавлении определенных ве­ществ, таких, как пирофосфат, многоатомные спирты, сахара и Р-актин, хотя механизмы торможения различны. Скорость дена­турации АТФазы увеличивается при расщеплении мышечного протеина в результате уменьшения размера, плотности и сим­метрии молекул. Скорость денатурации белков зависит и от не­которых других факторов. Например, денатурация фибриногена мочевиной ускоряется при увеличении концентрации мочевины и при понижении рН ниже 7, однако в интервале рН 7,0 .8,6 скорость реакции почти постоянна.

Присутствие тяжелой воды стабилизирует нативную структу­ру ферментов, обусловленную наличием водородных связей, уменьшая скорость инактивации.

В настоящее время установлено, что белки, входящие в состав мяса, денатурируют по мере достижения определенной для каж­дого белка температуры. Наиболее чувствителен к нагреву мио­зин. Температура денатурации, 0С: миозина 45 .50, актина 50, актомиозина 42 .48, миоальбуминов 45 .47, глобули­на 50, миогена 50 .60, коллагена 58 .62, миопротеидов около 100. В интервале температур 45 .500С денатурирует ос­новная часть структурных белков мышц. Саркоплазматические белки (миоген и миоглобин) денатурируют при более высоких температурах 55 .65°С. Наиболее устойчивы к денатурации миопротеиды (большая часть ферментов), а также гемоглобин, сывороточный альбумин, коллаген.

Установлено, что денатурация происходит ступенчато, т. е. при достижении белком определенной температуры он приобре­тает соответствующую структуру с определенными свойствами. Денатурация сывороточ­ного альбумина кролика осуществляется через три ступени. Денатурация кристаллического альбумина про­ходит через 4 ступени: первая ступень наступает при температуре 60°С, вторая 61 .65°С, третья лежит между 65°С и 80°С, четвертая при температуре выше 85 °С.

2.3 Изменение заряженных групп и рН белков в процессе тепловой обработки мяса

В процессе тепловой денатурации и последующей коагуля­ции происходят структурные изменения белков, разрыв прежних и образование новых связей при участии водородных связей, сульфгидрильных, дисульфидных, кислых и основных групп белков и гидрофобных взаимодействий.

Р. Гамм показал, что нагрев мяса в воде от 20 до 70°С вызыва­ет ступенчатое уменьшение числа карбоксильных групп в белках миофибрилл при существенно не изменяющемся количестве ос­новных групп. Достоверные изменения кислых групп начинают­ся при температуре 400С. В интервале 40 .50°С количество их снижается, при 50 .55°С оно остается неизменным. При темпе­ратуре выше 55°С число кислых групп продолжает уменьшаться, а при температуре около 60°С оно уменьшается очень значитель­но. Общее снижение числа кислых групп при нагревании до 70°С составляет 85 %. При температуре от 70 до 120 °С наряду с дальнейшим сокращением числа кислых групп начинается уменьшение числа основных.


Страница: