Анализ эффективности кредитных организаций
Рефераты >> Банковское дело >> Анализ эффективности кредитных организаций

Построим регрессию Y на факторы Z1-Z20 по методу линейной регрессии (табл.14.)

Таблица 14. Оценка линейной вероятностной модели

В нашем случае прогнозные значения Yf указывают на вероятность возврата (невозврата) кредита. Построим график прогнозных значений (рис.3.)

Рис.3. график прогнозных значений

Можно видеть, что прогнозные значения могут находиться вне интервала [0,1] – это главный недостаток LP модели. Поэтому приступим к построению моделей, лишенных этих недостатков.

2.8. Логистическая регрессия

Будем считать, что событие в данных фиксируется дихотомической переменной (0 не произошло событие, 1 - произошло). Для построения модели предсказания можно было бы построить, к примеру, линейное регрессионное уравнение с зависимой дихотомической переменной Y, но оно будет не адекватно поставленной задаче, так как в классическом уравнении регрессии предполагается, что Y - непрерывная переменная. С этой целью рассматривается логистическая регрессия. Ее целью является построение модели прогноза вероятности события {Y=1} в зависимости от независимых переменных X1,…,Xp. Иначе эта связь может быть выражена в виде зависимости P{Y=1|X}=f(X)

Логистическая регрессия выражает эту связь в виде формулы

, где Z=B0+B1X1+…+BpXp

Название "логистическая регрессия" происходит от названия логистического распределения, имеющего функцию распределения . Таким образом, модель, представленная этим видом регрессии, по сути, является функцией распределения этого закона, в которой в качестве аргумента используется линейная комбинация независимых переменных [3].

Отношение вероятности того, что событие произойдет к вероятности того, что оно не произойдет P/(1-P) называется отношением шансов.

С этим отношением связано еще одно представление логистической регрессии, получаемое за счет непосредственного задания зависимой переменной в виде Z=Ln(P/(1-P)), где P=P{Y=1|X1,…,Xp}. Переменная Z называется логитом. По сути дела, логистическая регрессия определяется уравнением регрессии Z=B0+B1X1+…+BpXp.

В связи с этим отношение шансов может быть записано в следующем виде

P/(1-P)= .

Отсюда получается, что, если модель верна, при независимых X1,…,Xp изменение Xk на единицу вызывает изменение отношения шансов в раз.

Механизм решения такого уравнения можно представить следующим образом

1. Получаются агрегированные данные по переменным X, в которых для каждой группы, характеризуемой значениями Xj= подсчитывается доля объектов, соответствующих событию {Y=1}. Эта доля является оценкой вероятности . В соответствии с этим, для каждой группы получается значение логита Zj.

2. На агрегированных данных оцениваются коэффициенты уравнения Z=B0+B1X1+…+BpXp. К сожалению, дисперсия Z здесь зависит от значений X, поэтому при использовании логита применяется специальная техника оценки коэффициентов - взвешенной регрессии.

Еще одна особенность состоит в том, что в реальных данных очень часто группы по X оказываются однородными по Y, поэтому оценки оказываются равными нулю или единице. Таким образом, оценка логита для них не определена (для этих значений ).

Построим модель пробит для наших данных. Оценивание в SPSS дает результаты (табл.15.), где приведены коэффициенты оценивания.

Таблица 15. Оценка логит-модели

 

B

Step 1(a)

schet

,585

 

srok

-,139

 

histor

,388

 

naznah

,033

 

zaim

-,181

 

chares

,239

 

timrab

,161

 

vznos

-,299

 

famil

,264

 

poruchit

,360

 

timelive

-,005

 

garonti

-,191

 

vozras

,068

 

inizaimi

,315

 

kvartir

,318

 

kolzaim

-,240

 

proff

,021

 

rodstve

-,153

 

telefon

,312

 

inosmest

1,225

 

Constant

-4,227

На основе модели логистической регрессии можно строить предсказание произойдет или не произойдет событие {Y=1}. Правило предсказания, по умолчанию заложенное в процедуру LOGISTIC REGRESSION устроено по следующему принципу: если >0.5 считаем, что событие произойдет; £0.5, считаем, что событие не произойдет (табл.16).


Страница: