Анализ эффективности кредитных организаций
Рефераты >> Банковское дело >> Анализ эффективности кредитных организаций

a 71,6% of original grouped cases correctly classified.

Лямбда Уилкса показывает на значимое различие групп (p < 0,001).

Таблица 12. Wilks' Lambda

Test of Function(s)

Wilks' Lambda

Chi-square

df

Sig.

1

,774

254,126

10

,000

В таблице 13 приведены коэффициенты дискриминантной функции

Таблица 13. Canonical Discriminant Function Coefficients

 

Function

   

1

SCHET

,528

SROK

-,140

HISTOR

,315

ZAIM

-,145

CHARES

,186

TIMRAB

,133

VZNOS

-,240

FAMIL

,248

PORUCHIT

,372

INIZAIMI

,262

(Constant)

-3,288

Точность распознавания дискриминантным анализом выше, чем кластерным. Но результаты по-прежнему остаются неудовлетворительными.

2.4. Дерево классификаций

Дерево классификаций является более общим алгоритмом сегмен­тации обучающей выборки прецедентов. В методе дерева клас­сификаций сегментация прецедентов задается не с помощью n-мерной сетки, а путем последовательного дробления факторного пространства на вложенные прямоугольные области (рис .1).

Рис.1. Дерево классификации

На первом шаге разделение выборки прецедентов на сегменты произво­дится по самому значимому фактору. На втором и последующих шагах в отношении каждого из полученных ранее сегментов процедура по­вторяется до тех пор, пока никакой вариант последующего дробления не приводит к существенному различию между соотношением положи­тельных и отрицательных прецедентов в новых сегментах. Количество ветвлений (сегментов) выбирается автоматически.

В рассмотренной методике также не дается ответ, насколько кредит хорош или плох. Метод не позволяют получить точную количествен­ную оценку риска и установить допустимый риск.

2.5. Нейронные сети

Нейронные сети NN используются при определении кредитоспо­собности юридических лиц, где анализируются выборки меньшего раз­мера, чем в потребительском кредите. Наиболее успешной областью их применения стало выявление мошенничества с кредитными карточка­ми. Нейронные сети выявляют нелинейные связи между переменными, которые могут привести к ошибке в линейных моделях. NN позволяют обрабатывать прецеденты обучающей выборки с более сложным (чем прямоугольники) видом сегментов (рис. 2). Форма сегментов зависит от внутренней структуры NN Формулы и коэффициенты модели риска на основе NN лишены физического и логического смысла.

Рис.2. Сегменты разделения «хороших» и «плохих» объектов в NN

Нейросеть — это «черный ящик», внутреннее содержание которого (так называемые веса нейронов) не имеет смысла в терминах оценки риска. Такие методики не позволяют объяснить, почему данному заемщику следует отказать в кредите. NN-модели классификации обладают низкой стабильностью (робастностью).

2.6. Технологии Data mining

В основе технологии data mining лежат алгоритмы поиска закономерностей между различными факторами в больших объемах данных. При этом анализируются зависимости меж­ду всеми факторами; но, поскольку даже при небольшом числе фак­торов количество их всевозможных комбинаций растет экспоненци­ально, в data mining применяются алгоритмы априорного отсечения слабых зависимостей [1]. Говоря терминами анализа кредитоспособности, data mining на основе данных о выданных кредитах выявляет те фак­торы, которые существенно влияют на кредитоспособность заемщика, и вычисляет силу этого влияния. Соответственно, чем сильнее опреде­ленный фактор влияет на кредитоспособность, тем больший балл ему присваивается в методике скоринга. Чем больше данные держателя кредитной карты похожи на данные «кредитоспособного гражданина», тем больший лимит по кредиту он может получить, тем лучшие усло­вия ему могут быть предоставлены

Главное преимущество методик на основе data mining заключается в том, что они могут работать на малых выборках. При больших вы­борках их точность, робастность и прозрачность недостаточны В них также не дается ответ, насколько кредит хорош или плох Метод не позволяет получить количественную оценку риска, установить допу­стимый риск, назначить цену за риск и выявить вклады факторов и их градаций в риск

2.7. Линейная вероятностная регрессионная модель

Задача регрессионного анализа состоит в построении модели, позволяющей по значениям независимых показателей получать оценки значений зависимой переменной. Линейная модель связывает значения зависимой переменной Y со значениями независимых показателей Xk (факторов) формулой:

Y=B0+B1X1+…+BpXp+e

где e - случайная ошибка. Здесь Xk означает не "икс в степени k", а переменная X с индексом k. Традиционные названия "зависимая" для Y и "независимые" для Xk отражают не столько статистический смысл зависимости, сколько их содержательную интерпретацию. Величина e называется ошибкой регрессии. Первые математические результаты, связанные с регрессионным анализом, сделаны в предположении, что регрессионная ошибка распределена нормально с параметрами N(0,σ2), ошибка для различных объектов считаются независимыми. Кроме того, в данной модели мы рассматриваем переменные X как неслучайные значения, Такое, на практике, получается, когда идет активный эксперимент, в котором задают значения X (например, назначили зарплату работнику), а затем измеряют Y (оценили, какой стала производительность труда). За это иногда зависимую переменную называют откликом. Для получения оценок коэффициентов регрессии минимизируется сумма квадратов ошибок регрессии:


Страница: