Анализ эффективности кредитных организаций
Рефераты >> Банковское дело >> Анализ эффективности кредитных организаций

Кластерный анализ является описательной процедурой, он не позволяет сделать никаких статистических выводов, но дает возможность провести своеобразную разведку - изучить "структуру совокупности".

Проведем кластеризацию по всем 20 признакам и всем наблюдениям. В результате работы программы выводится таблица 5. (показана лишь ее часть)

Таблица 5. Cluster Membership

Case Number

Y

Cluster

Distance

…………

……

…………

822

0

0

2985,732

823

1

0

2996,715

824

0

0

3040,706

825

1

0

3054,689

826

0

0

3099,727

827

1

0

3108,674

828

1

1

3100,310

829

1

1

3053,258

830

1

1

3043,285

831

1

1

2991,286

…………

……

………

…………

Столбец Y показывает, относится ли наблюдение к группе вернувших кредит “0” или навернувших “1”, столбец «Cluster» показывает принадлежность к той или иной группе наблюдения на основе кластеризации.

Таблица 6 указывает число наблюдений в том или ином кластере.

Таблица 6. Number of Cases in each Cluster

 

Cluster

1

822,000

 

0

178,000

 
 

Valid

1000,000

 

Missing

,000

Проанализируем качество классификации.

Таблица 7. Expectation-Predictable Table

 

Y=0

Y=1

Всего

всего по выборке

300

700

1000

прогноз

178

822

1000

правильно

65

587

652

неправильно

235

113

348

% правильно

21,7%

83,9%

65,2%

% неправильно

78,3%

16,1%

34,8%

Из таблицы можно видеть, что видеть, что метод позволяет хорошо предугадывать плохие заемы на уровне 83,9%, но плохо предугадывает хорошие заемы – 21,7%. Обычно к методикам выдвигается требование распознавать лучше плохие заемы, т.к. потеря невозврата кредита больше потери неполучения процентов по кредиту.

2.3. Дискриминантный анализ

Кластерный анализ решает задачу классификации объектов при практически отсутствующей априорной информации о наблюдениях внутри классов; в дискриминантном анализе предполагается наличие такой информации. С помощью дискриминантного анализа на основании некоторых признаков (независимых переменных) индивидуум может быть причислен к одной из двух (или к одной из нескольких) заданных заранее групп. Ядром дискриминантного анализа является построение так называемой дискриминантной функция [2]


Страница: