Анализ эффективности кредитных организаций
Рефераты >> Банковское дело >> Анализ эффективности кредитных организаций

D=b1*x1+b2*x2+…+bn*xn+a

где х1 и х2 — значения переменных, соответствующих рассматриваемым случаям, константы x1 - xn и а — коэффициенты, которые и предстоит оценить с помощью дискриминантного анализа. Целью является определение таких коэффициентов, чтобы по значению дискриминантной функции можно было с максимальной четкостью провести разделение по группам.

Дискриминантный анализ является разделом многомерного статистического анализа, который позволяет изучать различия между двумя и более группами объектов по нескольким переменным одновременно. Цели ДА – интерпретация межгрупповых различий - дискриминация и методы классификации наблюдений по группам.

При интерпретации мы отвечаем на вопросы: возможно ли, используя данный набор переменных, отличить одну группу от другой, насколько хорошо эти переменные помогают провести дискриминацию, и какие из них наиболее информативны.

Методы классификации связаны с получением одной или нескольких функций, обеспечивающих возможность отнесения данного объекта к одной из групп. Эти функции называются классифицирующими.

Реализуем метод дискриминантного анализа в SPSS. Существует 2 алгоритма классификации:

1. Одновременный учет всех независимых переменных. Результаты представлены в таблице 8

Таблица 8. Classification Results(a)

     

Y

Predicted Group Membership

Total

     

0

1

 

Original

Count

0

218

82

300

   

1

188

512

700

 

%

0

72,7

27,3

100,0

   

1

26,9

73,1

100,0

a 73,0% of original grouped cases correctly classified.

В таблице 9 приведены коэффициенты дискриминантной функции

Таблица 9. Canonical Discriminant Function Coefficients

 

Function

   

1

Z1

,503

Z2

-,127

Z3

,338

Z4

,024

Z5

-,150

Z6

,174

Z7

,134

Z8

-,242

Z9

,225

Z10

,314

Z11

-,006

Z12

-,172

Z13

,035

Z14

,242

Z15

,272

Z16

-,210

Z17

,023

Z18

-,135

Z19

,271

Z20

,611

(Constant)

-3,977

Лямбда Уилкса показывает на значимое различие групп (p < 0,001).

Таблица 10. Wilks' Lambda

Test of Function(s)

Wilks' Lambda

Chi-square

df

Sig.

1

,760

271,399

20

,000

2. Пошаговый метод. При выполнении дискриминантного анализа можно применить пошаговый образ действий, который рекомендуется при наличии большого количества независимых переменных.

Таблица 11. Classification Results(a)

Y

Predicted Group Membership

Total

0

1

Original

Count

0

219

81

300

1

203

497

700

%

0

73,0

27,0

100,0

1

29,0

71,0

100,0


Страница: