Комплекс геофизических исследований скважин Самотлорского месторождения для оценки ФЕС и насыщения коллекторов
На рис. 3.19 показана схема размещения катушек на зондовом устройстве. Здесь приняты следующие обозначения: Г1, Г2, Г3, Г4, Г5 — генераторные катушки; И1, И2, И3, И4, И5, И6 — измерительные катушки.
Таблица 3.1 Геометрические характеристики зондов
Схема зонда |
Длина, м |
База, м |
Точка записи, м |
И6 0.40 И5 1.60 Г5 |
2,00 |
0,40 |
3,28 |
И50.28И4 1.13Г4 |
1,41 |
0,28 |
2,88 |
И4 0.20 ИЗ 0.80 ГЗ |
1,00 |
0,20 |
2,60 |
ИЗ 0.14 И2 0.57 Г2 |
0,71 |
0,14 |
2,40 |
И2 0.10 И1 0.40 П |
0,50 |
0,10 |
2,26 |
ПС |
3,72 |
Все генераторные и измерительные катушки зондов меньшей длины размещены между катушками двухметрового зонда.
Рис. 3.19. Пятизондовая система. Поясн. см. в тексте.
Структурная схема аппаратуры
Структурная схема скважинного прибора представлена на рис. 3.20. Блок электроники обеспечивает поочередную работу зондов. Первой включается генераторная катушка Г: и измеряется разность фаз между э.д.с., наведенными в измерительных катушках Ир И2. Второй включается катушка Г2 и измеряется разность фаз между э.д.с., наведенными в измерительных катушках И2, И3. Далее поочередно включаются генераторные катушки остальных зондов.
Рис. 3.20. Структурная схема скважинного прибора. Поясн. см. в тексте.
Электронная схема содержит: усилители мощности — 1—5; смесители — 6— 11; аналоговый коммутатор — 12; перестраиваемый гетеродин — 13; устройство управления скважинным прибором — 14; усилители промежуточной частоты — 15, 16; опорный кварцевый генератор —17; широкополосный фазометр — 18; передатчик телесистемы — 19; выходное устройство — 20; блок питания — 21.
Смесители расположены в зондовом устройстве рядом с измерительными катушками. Там же установлен аналоговый коммутатор. Остальные элементы схемы расположены в блоке электроники.
Скважинный прибор подключается к наземной панели с помощью трехжильного кабеля. При регистрации на компьютеризированную каротажную станцию функции наземной панели может выполнять соответствующая программа.
Схема функционирования скважинного прибора и наземной панели
Скважинный прибор работает следующим образом (см. рис. 3.20). Сигнал, стабилизированный по частоте, с опорного генератора 17 поступает в устройство управления скважинным прибором 14, в котором вырабатываются сигналы, управляющие генераторными частотами. По команде из того же устройства 14 через усилитель мощности 1 на катушку Г1 первого зонда подается рабочая частота. По команде из устройства 14 настраивается частота гетеродина 20, смещенная относительно генераторной частоты на величину промежуточной частоты )f. Переменный ток в генераторной катушке возбуждает в окружающей среде электромагнитное поле. Это поле наводит в измерительных катушках И1—И6 э.д.с., зависящие от электрофизических свойств горных пород. Эти э.д.с. передаются на входы смесителей 6—11, а на их вторые входы поступает сигнал гетеродинной частоты. На выходе смесителей появляются сигналы промежуточной частоты с теми же фазами, что и у высокочастотных сигналов.
Процесс измерения происходит в два этапа. На первом этапе по команде из устройства 14 аналоговый коммутатор 12 подключает сигнал от смесителя 6 к усилителю промежуточной частоты 15, а сигнал от смесителя 7 — к усилителю промежуточной частоты 16. Усиленные и сформированные сигналы подаются на входы фазометра 18. После окончания переходных процессов в генераторных, гетеродинных цепях и усилителях 15, 16 по команде из устройства 14 фазометр 18 начинает первое измерение, в конце которого данные сохраняются. Затем начинается второй этап работы. По команде из устройства 14 аналоговый коммутатор 12 подключает сигнал от смесителя 6 к усилителю промежуточной частоты 16, а сигнал от смесителя 7 — к усилителю промежуточной частоты 15. Усиленные и сформированные сигналы подаются на входы фазометра 18. После окончания переходных процессов по команде из устройства 14 фазометр 18 начинает второе измерение. Измеренные данные суммируются с результатом первого измерения, при этом полезное значение разности фаз удваивается, а паразитное, возникающее из-за влияния на каналы усиления дестабилизирующих факторов, вычитается. Таким образом, перекрестная коммутация позволяет увеличить точность измерения. В фазометре происходит измерение разности фаз А<р между входными сигналами и их периода Т, усредненного по двум измерениям. Величины А.<р и Т с помощью передатчика ТЛС 19 по линии связи передаются на регистрацию через выходное устройство 20. Это устройство выделяет передаваемую информацию на фоне тока, поступающего по кабелю к блоку питания 21. Блок 21 преобразует постоянный ток в напряжения питания узлов прибора.
После этого из устройства 14 поступает новая команда, обеспечивающая прекращение работы первой генераторной катушки Г: и включение в работу второй генераторной катушки Г2, работающей на другой частоте. Одновременно на выходе гетеродина 13 появляется сигнал новой гетеродинной частоты, которая отличается от новой генераторной частоты на ту же самую величину А/ Аналоговый коммутатор 12 выбирает новую пару измерительных катушек И2, И3, и процесс измерения повторяется. Далее по очереди работают все остальные генераторные катушки Г3, Г4, Г5, каждая на своей частоте. Соответствующие подключения осуществляются в гетеродине 13 и в аналоговом коммутаторе 12. После окончания всего цикла вновь работает первая генераторная катушка Г1 и весь цикл повторяется.
Метрологическое обеспечение
Основным методом контроля метрологических характеристик является измерение в однородной среде с известным УЭС. Однородная среда может быть заменена водоемом с минерализованной водой. Для достижения допустимых погрешностей, обусловленных конечными размерами водоема, его глубина и поперечные размеры должны превышать 6 м. При этом необходимо обеспечить одинаковые значения УЭС во всем объеме раствора с погрешностью не более 1 %. Из-за нелинейности зависимости разности фаз )φ от величины УЭС необходимо проводить измерения по крайней мере в пяти точках рабочего диапазона измерений. Это можно реализовать путем изменения минерализации воды.