Проектирование многопустотной железобетонной плиты перекрытияРефераты >> Строительство >> Проектирование многопустотной железобетонной плиты перекрытия
м;
где а1*= 20+18/2=29мм,
0,144,
МВ,3Æ18=160,5 кНм.
Нанося полученное значение на эпюру, получаем точки теоретического обрыва. Для определения мест фактического обрыва необходимо найти требуемую длину анкеровки арматуры:
1) W1 по [3, п. 5.14, табл. 37]:
см,
где и то же, что и в (п. 3.7.1);
см;
см;
принимаем W1=25 см.
2) W1 по формуле, для МТО5:
,
для МТО6:
м,
Принимаем длину анкеровки в первом случае равной 112 см, и во втором случае равной 94 см.
Т.к. верхняя продольная арматура в первом пролёте не требуется, определим место её обрыва:
Место теоретического обрыва определяется по эпюре (момент равен нулю). Для определения места фактического обрыва необходимо найти требуемую длину анкеровки арматуры:
1) W1 по [3, п. 5.14, табл. 37]: W1=58 см.
2) W1 по формуле, для МТО7:
см,
Принимаем длину анкеровки равной 77 см.
3.7.4 Сечение на опоре С
кНм. На опоре В установлено 3Æ18A-III (As = 7,63 см2) и 3Æ12A-III (As = 3,39 см2). Несущая способность балки на опоре В, при полном количестве арматуры МUВ=218,2 кНм. Высота сжатой зоны м (а*= 42,8 см); , .
Обрываем ряд арматуры 3Æ12A-III (As,обор.= 3,39 см2 ≤ As/2). Тогда As=7,63 см2 [рис. 3.10].
Рис. 3.11 - Сечение ригеля с оборванной арматурой
Определим несущую способность балки на опоре С МВ,3Æ18, при наличии только верхней арматуры. Высота сжатой зоны:
м;
где а1*= 20+18/2=29мм,
0,144,
МВ,3Æ18=160,5 кНм.
Нанося полученное значение на эпюру, получаем точки теоретического обрыва. Для определения мест фактического обрыва необходимо найти требуемую длину анкеровки арматуры:
1) W1 по [3, п. 5.14, табл. 37]: W1= 25см [п. 3.7.3].
2) W1 по формуле, для МТО8
2) W1 по формуле, для МТО5:
,
Принимаем длину анкеровки равной 81см.
3.8. Стык ригеля у колонны
Стык ригеля у колонны выполняется ручной дуговой сваркой пропущенных через колонну соединительных стержней к закладным деталям ригеля [рис. 3.13] .
Площадь сечения соединительных стержней определяется по изгибающему моменту у грани колонны, увеличенному на 25%.
Усилия растяжения в соединительных стержнях:
=577,9кН,
где z=0.55 - 0.03 = 0.52м
Сечение стержней:
м2
Принимаем 3Ø28 с Аs=18.47см2. Общая рабочая длина сварных швов соединительных стержней с закладными деталями балок при высоте шва cм и электродах Э42.
м [6, формула 120]
м [6, формула 121]
где βf=0.7 ; βz=1.0; Rωf =180кН; Rωz =164кН.
Длина шва с учетом непровара при двухсторонней сварке см>13cм.
Рис 3.13 – стык ригеля у колонны на электроуглеродной сварке: 1- соединительные стержни; 2- арматурные вставки; 3 –бетон замоноличивания; 4 - металлические трубки Ø40мм, 5 –закладные детали.
4. Расчет колонны.
4.1 Общие положения
Колонна рассчитывается как внецентренно нагруженная стойка расчетной длины равной высоте этажа [3, п.1.2]. При расчете учитывается случайный эксцентриситет , обусловленный не учтенными в расчете факторами [3, п.1.21]. Постоянные и временные нагрузки от этажей считаются приложенными с этим эксцентриситетом. Рассчитывается колонна нижнего этажа.
4.2 Исходные данные
Здание четырехэтажное с плоским покрытием с высотой этажа 3,6 м. Сечение колонн 40´40 см, схема расположения колонн приведена на рис. 1.1. Класс бетона В25. Класс арматуры A-III.
4.3 Определение усилий в средней колонне нижнего этажа
Грузовая площадь при принятой сетке колонн равна
м2.
Постоянная нагрузка
240,65 кН [4, п.1.4.1]
Временная нагрузка на перекрытие
кН. [5, табл.1]
Длительная часть временной нагрузки
кН. [5, табл.1]
Снеговая нагрузка на покрытие для IV снегового района:
[2, 5; табл.4]
Длительная часть снеговой нагрузки
кН [2, п.1.7.к]
Собственный вес колонны в пределах этажа
кН.
Продольное усилие в колонне нижнего этажа (здание 6-ти этажное).
Полное расчетное усилие
2733.92кН.
Усилие постоянной и длительной нагрузок
2107.63кН.
Значение случайного эксцентриситета выбирается из двух значений:
см;