Лазерная система для измерения статистических характеристик пространственных квазипериодических структур
Рефераты >> Технология >> Лазерная система для измерения статистических характеристик пространственных квазипериодических структур

· при , т.е. плоскость х3у3 спектрального анализа должна совпа-дать с плоскостью х2у2 размещения фурье-объектива, что физически нереализуемо в оптической системе, согласно условию Гауса.

Учитывая выражения и (2.2) можем преобразовать (2.1) к виду:

(2.3),

откуда видно, что квадратичные фазовые искажения фурье-образа сигнала устранимы не только при освещении входного транспаранта плоской, но и сферической волной.

При условии фокусировки оптической системы, показанной на рис.3, в ней осуществляется спектральное преобразование Фурье, формируемое в плоскости х3у3, над пространственным сигналом, помещенном в плоскости х2у2. Однако, фурье-образ сигнала в такой системе содержит квадра-тическую модуляцию фазы волны из-за наличия фазового сомножителя. Наличие фазовой модуляции фурье-образа сигнала приводит к допол-нительным аберрациям интерферограммы при регистрации методами голографии. Эта модуляция имеет также важное значение и не может быть опущена. Модуляция может быть устранена на оптической оси системы и при , т.е. при фокусировке оптической системы на бесконечность. Но в этом случае оптическая система не будет осуществлять спектральное преобразование Фурье.

Для оптической системы КОС, представленной на рис.3, квадратичные фазовые искажения, приводящие к аберрационным искажениям фурье-об-раза сигнала, не могут быть устранены лишь путем соответствующего выбора геометрических парметров оптической системы. Для устранения этих искажений необходимо оптическую систему дополнить корректирую-щим фильтром с фазовой характеристикой, сопряженной к квадратичным фазовым искажениям фурье-образа сигнала.

Итак можно сделать выводы:

· Квадратичные фазовые искажения фурье-образа сигнала устранимы путем соответствующего выбора геометрических размеров оптичес-кой системы, но лишь для КОС, выполненного по схеме “входной транспарант - перед фурье-объективом”.

· При расположении ЛЗ в передней фокальной плоскости фурье-объектива масштаб ее дифракционного изображения не зависит от радиуса освещающей волны, а определяется величиной фокусного растояния и длиной волны излучения лазера. Это позволяет рас-ширить дифракционную полосу анализа путем увеличения радиуса освещающей волны, не изменяя, при этом масштаб дифракционного изображения.

· При освещении ЛЗ, расположенной в передней фокальной плоскости фурье-объектива, плоской световой волной, погрешность прост-ранственной частоты зависит лишь от длины волны излучения лазера и фокусного растояния фурье-объектива, что позволяет обеспечить ее уменшение путем увеличения и .

Рис.2. Схема КОС со входным транспарантом перед фурье-объективом

Рис.3. Схема КОС со входным транспарантом за фурье-объективом

3.Математическая модель квазипериодической

структуры СВЧ линий замедления

При статистических исследованиях геометрических размеров элементов пространственной структуры ЛЗ установлено, что из-за различных техноло-гических погрешностей, эти размеры являются величинами случайными с нормальным законом распределения. Таким образом, пространственная структура ЛЗ не является строго переодической, а поэтому ее энер-гетический спектр будет отличаться от энергетического спектра периоди-ческих структур.

Из скалярной теории [7, 8] известно, что оптической системой КОС в плоскости спектрального анализа формируется дифракционное изображе-ние пространственного объекта, помещенного во входной плоскости. Математические зависимости, описывающие форму дифракционного изоб-ражения, могут быть определены лишь путем решения задачи о дифракции когерентной световой волны на пространственной структуре объекта. Одна-ко для пространственной структуры ЛЗ с флуктуациями периодичности, решение такой задачи чисто оптическими методами не может быть полу-чено из-за значительной математической сложности ее. Кроме, того эти методы применимы лишь для решения дифракционных задач на регу-лярных детерминированных пространственных структурах и неприменимы для случайных пространственных сигналов.

Поэтому в настоящее время такие задачи для случайных оптических сигналов решают в оптике с применением методов статистической радио-физики в силу единства физических процессов и математических методов анализа прохождения электрических сигналов в электрических цепях и распостранения пространственных сигналов в оптических системах. Это позволяет определить распределение освещенности в дифракционном изображении квазипериодической пространственной структуры ЛЗ (т.е. ее энергетический спектр) путем вычисления усредненного квадрата преобра-зования Фурье над ее амплитудным коэфициентом пропускания.

Пространственная штриховая структура ЛЗ является квазипериодичес-ким сигналом, в технике ОСОИ, и состоит из взаимонезависимых прозрач-ных щелей и непрозрачных стенок. К тому же период пространственной структуры ЛЗ также является случайной величиной, так как он равен сумме двух взаимонезависимых величин. Таким образом, пространственная струк-тура ЛЗ относится к классу случайных квазипериодических сигналов.

Поскольку освещенность пространственной структуры ЛЗ, помещенной во входной плоскости КОС, равномерна по полю, то ее амплитудный коэфициент попускания может быть описан единично-нулевой функ-

цией. Поэтому, в пределах ширины прозрачных щелей функция , а в пределах ширины непрозрачных стенок, соответственно, 0. Кроме того, ширина щелей и стенок являются величинами взаимонезави-симыми, поскольку при изгибах стенок толщина их не изменяется, а изменяется лишь ширина щелей. Взаимонезависимость этих величин также возникает и потому, что зубья в верхней и нижней гребенках наре-заются раздельно на разных заготовках, после спаивания которых обра-зуются между зубьями щели, а ширина их уже не зависит от толщины зубьев, что подтверждается также малостью коэфициента корреляции для размеров и .


Страница: