Испытания образцов специального ракетного вооружения
Рефераты >> Технология >> Испытания образцов специального ракетного вооружения

4.1 Требования к элементам системы измерения

Наибольшее распространение при измерении импульсных сил и ускорений находят электрические методы. В блок-схему измерительного тракта входят датчики, являющиеся преобразователями механических параметров удара в электрические сигналы, и измерительная аппаратура, позволяющая регистрировать эти сигналы.

Измерение импульсных нагрузок представляет собой сложную техническую задачу, поскольку к датчикам и измерительной аппаратуре предъявляются жесткие требования по частотным характеристикам.

Соотношение длительности импульса и собственной частоты датчика и полоса пропускания регистрирующей аппаратуры имеют первостепенное значение для обеспечения достоверности результатов измерения.

При измерении кратковременных импульсных процессов желательно иметь датчики с высокой частотой собственных колебаний. Но поскольку, как правило, при повышении этой частоты снижается чувствительность прибора, при выборе его характеристик необходимо принимать компромиссное решение.

К датчикам предъявляются и ряд других требований. Желательно иметь датчики с малой поперечной чувствительностью, нечувствительные к внешним факторам: температуре и влажности. К датчикам должно предъявляться требование линейности характеристики. Важным параметром является также максимальное значение измеряемого ускорения. К датчикам может предъявляться требование по габаритам и массе. При измерениях необходимо учитывать, что масса датчика, если она соизмерима с массой элемента конструкции испытуемого изделия, будет влиять на динамические свойства исследуемого объекта.

Как правило, сигнал, вырабатываемый датчиком, требуется усилить и зарегистрировать. Поэтому в комплект измерительной аппаратуры обычно входят усилители и записывающие устройства. К усилителям и регистрирующей аппаратуре также предъявляются требования, которые зависят от частотной характеристики измеряемого процесса.

4.2 Датчики для измерения импульсных ускорений

Для измерения ударных ускорений широкое применение находят пьезоэлектрические датчики. Это обусловлено возможностью создания пьезодатчиков с хорошими техническими характеристиками. В частности, пьезодатчики могут иметь широкую полосу рабочих частот, малые габариты и малую массу, высокую вибрационную и ударную прочность и устойчивость. К недостаткам пьезодатчиков следует отнести необходимость использования согласующего устройства с большим входным сопротивлением. На рисунке 4.2.1 сфотографированы датчики, предназначенные для измерения импульсных ускорений, используемые на разрабатываемой установке.

Рисунок 4.2.1 -

Пьезоэлектрические датчики являются преобразователями генераторного типа, т. е. не требуют источников питания. При нагружении пьезоэлемента усилием F = ma на электродах пьезоэлемента появляется электрический заряд, пропорциональный мгновенному значению ускорения а.

Пьезоэффектом обладают кварц, турмалин, сегнетовая соль, соединения титаната бария, соединения цирконата свинца и др.

Эквивалентная схема пьезоэлектрического датчика представлена на рисунке 4.2.2. Емкость Сн представляет собой сумму емкостей датчика, соединительного кабеля, масштабной емкости и емкости входа согласующего устройства; сопротивление Rн представляет собой общее электрическое сопротивление параллельно соединенных резисторов (сопротивление утечки датчика, сопротивление изоляции кабеля, сопротивление изоляции обкладок конденсатора масштабной емкости и входное сопротивление согласующего устройства).

Рисунок 4.2.2 – Эквивалентная схема пьезодатчика

Напряжение на входе согласующего устройства

, (4.2.1)

где Q — заряд на электродах пьезоэлемента.

Заряд Q можно выразить через коэффициент преобразования (постоянную чувствительности) датчика по заряду:

Q = ahq, (4.2.2)

Коэффициент преобразования датчика по заряду выражается в пК/мс2 и является постоянной величиной, независящей от емко­сти нагрузки. Пьезоэлектрические датчики также характеризу­ются коэффициентом преобразования по напряжению, который связан с коэффициентом преобразования по заряду соотношением

, (4.2.3)

причем зависит от емкости нагрузки.

Пьезодатчики в той или иной степени воспринимают поперечные составляющие ударного возбуждения, что связано с наличием электрической и механической асимметрии пьезоэлемента или с асимметрией крепления датчика. Степень чувствительности к поперечной составляющей выражается в % от его максимальной чувствительности.

Важным параметром датчика является его резонансная частота. Как было показано, датчик для измерения ускорений можно представить как колебательную систему с одной степенью свободы, которая, очевидно, имеет резонанс.

Кроме того, датчик обладает резонансом как элемент электрической цепи. Однако верхний предел рабочей частоты датчика определяется в большинстве случаев частотой резонанса крепления, которая зависит от массы датчика, метода и жесткости крепления и, как правило, ниже резонансных частот пьезодатчика.

Нижняя граница диапазона рабочих частот пьезодатчика определяется величиной его емкости, емкостью соединительного кабеля и входным сопротивлением измерительного прибора. Поэтому для расширения диапазона рабочих частот нужно использовать пьезодатчики с большой емкостью и измерительную аппаратуру с высоким входным сопротивлением. Необходимо помнить, что увеличение емкости понижает чувствительность датчика.

Пьезоэлектрические датчики чувствительны к температуре и влажности. Более высокой температурной стабильностью облада­ют кварц и некоторые виды титаната цирконата свинца, которые могут работать при температуре до +200° С. Коэффициент влияния температур определяет погрешность измерения, отнесенную к 1° С, на крайних точках температурного диапазона. Влажность уменьшает сопротивление изоляции всех пьезоэлектрических материалов, внутренних соединений, зажимов, разъемов.

Таким образом, основными характеристиками пьезодатчиков для измерения ускорений, определяющими их область применения, являются рабочий диапазон частот; максимальное измеряемое ускорение; коэффициент преобразования; относительная поперечная чувствительность; диапазон рабочих температур; габариты и масса датчика.

Основными элементами пьезоэлектрического датчика являются чувствительный элемент (цилиндрический или кольцевой) из поляризованной пьезокерамики, инерционный груз и контактное устройство, соединяющее пьезоэлемент с регистрирующей аппаратурой. На рисунке 4.2.3 показана одна из конструкций пьезоэлектри­ческого датчика. Чувствительный элемент из титаната бария 1 опирается на стальную самоустанавливающуюся пяту 2 со сферической опорной поверхностью. На пьезоэлементе установлен инерционный груз 3, поджимаемый пружиной 4. Груз помещен в корпус 5 и изолирован от него втулкой 6. Заряд с пьезоэлемента снимается через груз 3, контактный винт 7 при помощи стан­дартного штекерного разъема 8 и коаксиального кабеля.


Страница: