Основы специальной теории относительности и релятивистская механика
Согласно принципу Гюйгенса, поверхность S1 ,будет геометрической огибающей поверхностью фронтов всех элементарных волн, построенных для всех точек P поверхности S.
Одновременно с построением положения последующего фронта волны мы узнаем и дальнейший ход всех лучей. Прямой отрезок, проведенный из точки P на поверхности P, являющейся центром испускания элементарной волны, в точку P1, расположенную на поверхности S1 и являющуюся точкой касания этой элементарной волной огибающей поверхности S, является элементом луча. Один из элементов луча изображен отрезком PP1 на рисунке.
Точки P и P1, принадлежащие соответственно поверхностям S и S1 и являющиеся началом и концом одного и того же элемента луча, называются сопряженными точками.
При помощи геометрического построения Гюйгенса можно найти последовательные положения S, S1,S11, . фронта распространяющейся волны и последовательные элементы PP1,P1P11,P11P111, . любого луча. Каждый такой луч проходит через ряд сопряженных точек, следующих одна за другой через бесконечно малые расстояния.
|
В случае отсутствия в среде эфирного ветра каждая из рассмотренных бесконечно малых элементарных волн представляет собой бесконечно малую сферу радиуса c1t, с центром, расположенным в соответствующей точке P, где c1 - локальная скорость света в точке P среды. Для неоднородной среды скорость света является заданной функцией с1=с1(x,y,z) точки среды и поэтому различные элементарные волны будут иметь разные радиусы, см. рис.
В случае наличия в среде эфирного ветра элементарные волны тоже являются бесконечно малыми сферическими поверхностями, но эти поверхности теперь непрерывно сносятся движением эфира, и поэтому центры их в момент времени t+dt располагаются не в точках P испускания волн, а в бесконечно мало сдвинутых точках Q, которые находятся на бесконечно малых, прямолинейных отрезках PR, вдоль точки P эфира перемещаются при его движении за интервал времени t, t+dt. Отрезок PR имеет длину v·dt, где v - скорость эфира в точке P и он направлен вдоль вектора скорости v эфирного ветра в этой точке P. Радиусы сфер элементарных волн, однако, все равно равны c1·dt, как в неподвижной среде, см. рис.
Точка Q может находиться и в начале (Q=P), и в конце (Q=R) отрезка PQ, а также может лежать и внутри этого отрезка. Соответственно Лоренц пользуется одной из следующих гипотез.
а) Если Q=P, то эфир не увлекается движущейся средой.
б) Если Q=P, то эфир полностью увлекается движущейся средой.
в) Если PQ=(1/n2)PR, то эфир частично увлекается движущейся средой; здесь n - локальный показатель преломления для неподвижной среды в точке P.
Рассмотрим теперь важный частный случай движения Земли и прозрачной Среды, когда они движутся в мировом пространстве поступательно равномерно прямолинейно вдоль некоторого направления с некоторой постоянной скоростью v.
Длина отрезка PQ теперь равнапричем направления отрезков PR и скорости v во всех точках P будут одинаковы.
Для частного случая поступательного равномерного прямолинейного движения Земли и прибора сквозь мировой эфир Лоренц доказал следующую замечательную теорему.
Теорема Лоренца. С точностью до членов первого порядка включительно по отношению скоростей v/c, где v - поступательно равномерного прямолинейного движения оптического прибора через неподвижный эфир, с - скорость света в пустоте, геометрический ход лучей в оптическом приборе не зависит от движения среды.
|
Приступим к доказательству сформулированной теоремы. Рассмотрим ход лучей в приборе относительно декартовых прямоугольных осей координат Oxyz, жестко связанных с ним. Прибор движется равномерно прямолинейно поступательно с постоянной скоростью v через неподвижный эфир.
Обратимся еще раз к рассмотренному выше рисунку. Обозначим РP1PQ между направление светового луча, исходящего из точки P, и направлением движения среды - через q, см. рис.
На рисунке полупрямая QP направлена вдоль направления эфирного ветра. Согласно теореме косинусов, примененной к DP1PQ, имеем следующее соотношение. Отрезок P1Q, согласно лоренцеву принципу Гюйгенса, равен c1·dt, где c1 - локальная скорость света в точке P. Отрезок PQ, согласно тому же принципу, равен k·v·dt, где k=1/n2, n - локальный показатель преломления в точке P, v - скорость эфирного ветра. Отрезок PP1 равен с1дв·dt, где с1дв - локальная скорость света в точке P для Среды с эфирным ветром. Таким образом, приведенное соотношение можно представить в следующем виде:
или в виде квадратного уравнения из которого можно определить скорость с1дв. Решая это квадратное уравнение получимочевидно перед корнем надо взять знак плюс, иначе получили бы отрицательное значение для скорости с1дв. Считая скорость v движения среды через неподвижный эфир или, что то же самое, скорость эфирного ветра малой по сравнению со скоростью света с и разлагая корень в ряд по малости v2, имеемСледовательно, с точностью до членов третьего порядка малости по v/c получаем приближенную формулу. Из этой формулы сразу выведем еще одну приближенную формулу, которая нам понадобится в дальнейшем: или справедливо с точностью ло членов порядка малости v3/c31.
Определив, с помощью лоренцева обобщенного принципа Гюйгенса, скорость с1дв распространения света по лучу для поступательно равномерно прямолинейно движущейся прозрачной среды, воспользуемся теперь принципом Ферма для определения хода лучей в оптическом приборе, жестко связанном с движущейся Землей и перемещающимся вместе с ней. Согласно принципу Ферма, для истинного пути L светового луча, выходящего из какой-то фиксированной точки А и приходящего в другую фиксированную точку В, криволинейный интеграл представляющий собой время распространения света по лучу, должен принять минимальное значение. Здесь ds - длина элемента дуги кривой ALB.
Пренебрегая членами второго порядка малости v2/c21 в вышеприведенной формуле для 1/ с1дв, получаем следующую простую формулу для времени t для любого мысленно воображаемого пути ALB: