Основы специальной теории относительности и релятивистская механика
как мы это объяснили выше.
Определим теперь наклон светового пучка в прозрачной среде, который образуется из светового пучка . Если бы движение эфира через прозрачную среду отсутствовало, то мы имели бы пучок , имеющий угол наклона к вертикали, определяемый из закона Снеллиуса:
;
считая, что угол , а следовательно и угол очень малы. Таким образом, для длины отрезка имеем выражение
если предположить, что — толщина слоя прозрачной среды в приборе. Движение эфира через прозрачную среду, однако, происходит. Согласно гипотезе частичного увлечения эфира прозрачным телом, эфир протекает через плоскопараллельный слой прозрачной среды справа налево горизонтальным непрерывным сплошным потоком, движущемся со скоростью
;
она меньше скорости движения Земли, которую эфир имел бы, если бы он не увлекался прозрачной средой. Вследствие переносного движения, фронт волны , распространяющийся в прозрачной среде вертикально вниз до экрана со скоростью — скоростью света в среде — за время
,
при попадании на экран будет снесен в горизонтальном направлении влево на расстояние
Получили для отрезка тот же результат, что и выше, когда делали предположение, что движение эфира отсутствует.
Таким образом мы должны сделать вывод, что движение рассматриваемого оптического прибора вместе с Землей со скоростью сквозь неподвижный эфир никак не сказывается на ходе лучей в нем; закон преломления остается таким же. Луч, приходящий от звезды, ведет себя в точности так же, как и луч такого же направления, идущий от земного источника.
4.6. Геометрическая оптика неоднородной прозрачной среды, пронизываемой движущимся через нее эфиром. Теорема Лоренца.
Свою оптико-геометрическую теорию движущихся вместе с Землей оптических приборов Лоренц развил в 1886 г. с целью объяснения следующих трех к тому времени уже твердо установленных опытных фактов:
1) существует явление астрономической аберрации положений звезд, заключающееся в том, что звезды в течение года описывают на небе маленькие эллипсы (переходящие в окружности для звезд, находящихся вблизи полюса эклиптики, и дважды покрытые отрезки для звезд, находящихся вблизи экватора эклиптики);
2) свет от любой звезды, фиксируемый на Земле как свет, приходящий по определенному направлению и определенной частоты, будучи использованным в любых оптических экспериментах — по отражению, по преломлению, по интерференции и т.д., ведет себя в точности так же, как и свет от земного источника, распространяющийся по тому же направлению и обладающий той же частотой;
3) ни в одном оптическом эксперименте, который можно произвести с земным источником света, нельзя наблюдать никакого эффекта, связанного со скоростью движения Земли на ее орбите вокруг Солнца, если ограничиться членами первого порядка малости по , где — скорость света в пустоте.
Любой как угодно сложный оптический прибор, содержащий линзы, призмы, щели, диафрагмы и т.д., можно считать кусочно однородной средой (т.е. средой, состоящей из пространственных областей с разными показателями преломления). Будем, однако, следуя Гамильтону, полагать, что имеем дело не с такой специфической кусочно-однородной, а с произвольной оптически неоднородной средой, оптические свойства которой характеризуются заданной функцией локального показателя преломления , где — показатель преломления в точке среды с координатами .
Среду будем считать твердой, прозрачной, неподвижной и жестко связанной с Землей, движущейся сквозь эфир, покоящийся в мировом пространстве.
Лоренц проводит рассуждение в декартовой прямоугольной системе координат , жестко связанной со средой и с Землей. При этом он предполагает, что Землю и прозрачную среду пронизывает “эфирный ветер”, характеризующийся стационарным (не зависящим от времени) полем скоростей .
Таким образом Лоренц берет развитую им самим обобщенную формулировку принципа Гюйгенса, учитывающую, что эфир движется относительно прозрачной среды, в которой мы исследуем распространение световых волн, т.е. что в среде имеется эфирный ветер.
Как при формулировке обычного принципа Гюйгенса, для неподвижного эфира, возьмем два бесконечно близких положения волнового фронта, или фронта волны, распространяющейся в покоящейся относительно Земли, но движущейся относительно мирового пространства среде, увлекающей с собой частично эфир, в два бесконечно близких момента времени t и t+dt. Пусть эти положения характеризуются двумя геометрическими поверхностями S и S1, см. рис.
|
Чтобы исходя из поверхности волнового фронта S построить поверхность волнового фронта S1, надо взять каждую точку P на поверхности S и мысленно испустить из этой точки в момент времени t т.е. взять бесконечно малую поверхность около точки P, до которой к моменту времени t+dt это возмущение дошло. Такую поверхность назовем фронтом элементарной волны. На приведенном рисунке кривая ab изображает часть поверхности фронта элементарной волны, испущенной из точки P, рассматриваемой в момент времени t+dt.