Курс лекций по физике
Рефераты >> Физика >> Курс лекций по физике

Знак " – " означает, что ускорение направлено в сторону, противоположную смещению. Изменение y, v, a с течением времени можно представить так:

t

y

v

a

0

0

ωy0

0

T/4

y0

0

– ω2 y0

T/2

0

– ωy0

0

3T/4

– y0

0

ω2 y0

T

0

ωy0

0

Графически эти зависимости имеют вид:

Из таблицы и графика следует, что скорость имеет максимальные значения, когда точка проходит положения равновесия, а ускорение максимально в крайних положениях.

Сложение колебаний

Из теорий гармонического анализа известно, что любую периоди­ческую функцию f(x), имеющую период 2π, можно представить в виде тригонометрического ряда:

где a0, an, bn - коэффициенты этого ряда, определяемые по формулам:

Следовательно, любое сложное колебание можно предста­вить как сумму нескольких простых. Чтобы знать, как зависят парамет­ры сложного колебания от соотношения частот, амплитуд, фаз и направлений слагаемых колебаний, рассмотрим наиболее простые случаи сложения гармонических колебаний.

1. Сложение двух колебаний одного направления.

а) сложение 2-х колебаний одинаковой частоты.

ω1 = ω2 = ω, Т1 = Т2 = Т Уравнения колебаний отличаются только начальной фазой и амплитудой и имеют вид:

Представим оба колебания в виде векторов амплитуды Х01 и Х02, Сложение векторов выполним графически.

Отложим от точки 0 под углом φ1 – вектор Х01, под углом φ2 – вектор Х02. Обе амплитуды вращаются с одинаковой угловой скоростью и против часовой стрелки. Следовательно, угол между амплитудами остается постоянным, равным (φ2 – φ1). Вектор Х0 представляет собой гармоническое колебание, происходящее с той же частотой и амплитудой │Х0│= │Х01+ Х02│ и начальной фазой φ. Из чертежа

Само результирующее колебание имеет вид:

Важно заметить, что амплитуда результирующего колебания зависит от разности фаз (φ2 – φ1) слагаемых колебаний.

Она заключена в пределах:

1) Если разность начальных фаз слагаемых колебаний, равна четному числу π, φ2 – φ1 = кπ , то Х0 = Х01 + Х02, tg φ = tg φ1, φ = φ1, к = 0,1,2, …

Колебания однофазные и усиливают друг друга.

2) Если φ2 – φ1 = (2к+1)π , то Х0 = Х01 - Х02 , к = 0,1,2,… следовательно колебания ослабляют друг друга

3) Если Х01 = Х02 , ω1 = ω2 = ω , φ2 = φ1

Уравнение результирующего колебания имеет вид:

– начальная фаза результирующего колебания.

Результирующее колебание гармоническое, отличающееся по фазе от слагаемых колебаний на половину суммы их начальных фаз.

При φ1 – φ2 = 2кπ , (к = 0,1,2,…) Х0 = 2Х01 – колебания усиливаются.

При φ1 – φ2 = (2к + 1)π , (к = 0,1,2,…) Х0 = 0 – колебания гасятся.

2. Биения.

Особый интерес представляет сложение колебаний одинакового направления с одинаковыми амплитудами, имеющими (близкие) мало отличающиеся частоты.

Результирующее суммарное колебание имеет уравнение:

Полученное выражение представляет собой произведение 2-х гармонических сомножителей с частотами и .

Если ω1 мало отличается от ω2 , то частота имеет близкие значения к ω1 и ω2 , а частота – будет очень мала, т.е.


Страница: