Курс лекций по физике
Рефераты >> Физика >> Курс лекций по физике

Если положение и радиус окружности, по которой происходит вращение не изменяется со временем, то έ совпадает по направлению с направлением ω в случае ускоренного вращательного движения и противоположна в случае замедленного вращения.

Связь между линейной и угловой скоростью и ускорением.

Отдельные точки вращающегося тела имеют различные линейные скорости v , которые непрерывно изменяют свое направление и зависят от ω и расстояния r соответствующей точке до оси вращения.

Точка, находящаяся на расстоянии r от оси вращения проходит путь ΔS = rΔφ.

Поделим обе части равенства на Δt:

, при Δt 0 получим пределы от левой и правой частей равенства:

Но

Таким образом, чем дальше отстоит точка от оси вращения, тем больше ее линейная скорость. Известно, что

Откуда

Из написанных формул видно, что aτ, an и a растут с увеличением расстояния точек до оси вращения. Формула v = ωr устанавливает связь между модулями векторов v, r, и ω, которые перпендикулярны друг к другу.

Т.к. ω | r ,то можно написать v = ω∙r∙sina это ничто иное как модуль векторного произведения. Таким образом

v = [ ω r ]

Рассмотренные простейшие виды движения твердого тела важны потому,

что любое движение твердого тела сводится к ним.

Рассмотрим два последовательных положения тела А1 и А2. Из положения А1 в положение А2 тело можно перевести следующим образом: вначале А1 в А1 поступательно. Затем из положения А1 в положение А2 путем поворота на угол φ вокруг произвольной точки 0.

Следует отметить, что в вращательному движению применимы все формулы кинематики материальной точки с заменой в них линейных величин на соответствующие угловые.

Например:

Колебательное движение.

Колебаниями или колебательными движениями являются движения или изменения состояния, обладающие той или иной степенью повторяемости во времени. Колебания весьма разнообразны по своей природе: колеба­ния пружинного маятника, качания маятников, колебания струн, вибра­ции фундаментов, качка корабля, колебания ветвей деревьев и т.д.

Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени: положение маятника в часах, Т – период, v = 1/T.

При изучении кинематики колебательных движений нас интересуют:

- закон, по которое повторяется движение;

- время, через которое тело (система) снова приходит к тому же самому состоянию;

- наибольшие отклонения, которых достигает движущееся тело и т.д.

Изучив эти характеристика колебательного движения, мы можем определить состояние тела (системы) в любой момент времени.

Все сложные виды колебательных движений можно свести к простейшим гармоническим колебаниям. Гармоническими колебаниями физической величины a называется процесс изменения ее во времени по закону sin или cos.

Например: колебания математического маятника, x = x0cosωt колебания пружинного маятника.

Аналогично колебательного движения можно получить, если рассмотреть закон изменения проекции точки, движущейся по окружности на линию, лежащую в плоскости движения точки.

Если радиус окружности r, угловая скорость вращения ω , то проекция

y = r sinφ = r sinωt

если было начальное смещение на φ0,

y = r sin ( ωt + φ0 )

Аргумент синуса (или cos) наз. фазой. Фаза определяет положение колеблющейся величины в данный момент времени. φ0 – начальная фаза, которая определяет положение точки в начальный момент времени t = 0

y = y0 sinφ0

ω - круговая или циклическая частота, т.е. число полных колебаний, которые совершаются за 2π единиц времени:

ω = 2πv = 2π/Т

где v - частота колебаний, т.е. число полных колебаний за единицу времени;

Т - период колебания - наименьший промежуток времени, по истечении которого повторяются значения всех величин, характеризующих колебательное движение, т.е. время, за которое совершается полное колебание; у – смещение точки - удаление от положения равновесия в данный момент времени; у0 - амплитуда колебания - (наибольшее значение колеблющейся функции).

Вычислим скорость и ускорение точки, совершающей гармоническое колебание:


Страница: