Туннельный эффект, туннельный диод
Таким образом, туннельный эффект становится практически ощутимым лишь в сильнолегированных материалах. Изучая узкие сильнолегированные сплавные переходы в германии, Эсаки и открыл новый тип полупроводникового прибора — туннельный диод, вольтамперная характеристика которого изображена на рис. 6, а в сравнении с вольтамперной характеристикой обычного диода, изображенной штриховой линией.
Энергетическая диаграмма туннельного перехода при отсутствии внешнего смещения была показана на рис. 4. Образовавшееся вследствие вырождения полупроводникового материала перекрытие зон является необходимым условием для возможного туннелирования электронов через потенциальный барьер узкого p-n-перехода. Положение уровня Ферми затенено снизу для выделения того уровня энергии электронов в разных материалах, который находится в одинаковых энергетических условиях при термодинамическом равновесии тел. Вероятность заполнения этого уровня, как известно, равна половине. Такому выделению уровня Ферми способствует и слабая зависимость его положения в примесных полупроводниках от изменения температуры в пределах, встречающихся на практике. Подобное выделение этого уровня облегчает рассмотрение вопросов, связанных с распределением электронов по энергетическим уровням в зонах.
Такой подход и применен (рис. 6, б—ж) для объяснения формы вольтамперной характеристики туннельного диода.
частей зон будет аналогичное, что определяет одинаковые вероятности для туннелирования электронов слева направо и справа налево. Результирующий ток через переход в этом случае равен нулю, что соответствует точке в на вольтамперной характеристике (см. рис. 6, а)
При подаче на переход прямого смещения (плюс источника питания на p-область и минус — на n-область), уменьшающего перекрытие зон. Энергетические распределения электронов смещаются друг относительно друга совместно с уровнями Ферми (см рис. 6. в). Это приводит к преобладанию электронов в n-области над электронами одной и той же энергии в p-области и количества свободных уровней в p-области над незанятыми уровнями в n-области на одинаковых уровнях в месте перекрытия зон. Вследствие этого поток электронов из n-области в p-область будет преобладать над обратным потоком и во внешней цепи появится ток, что соответствует точке в на характеристике (см. рис. 6, а).По мере роста внешнего смещения результирующий ток через переход будет увеличиваться до тех пор, пока не начнет сказываться уменьшение перекрытия зон, как это показано на рис. 6, г. Это будет соответствовать максимуму туннельного тока. При дальнейшем увеличении напряжения в результате уменьшения величины перекрытия зон туннельный ток начнет спадать и наконец спадает до нуля (штрих-пунктир на рис. 6, а) в момент, когда границы дна зоны проводимости и потолка валентной зоны совпадут (см. рис. 6, д).
Из рассмотрения действительной вольтамперной характеристики туннельного диода видно, что ток в точке д не равен нулю. Это можно понять, если учесть, что при положительном смещении будет иметь место инжекция электронов из электронной области в дырочную и инжекция дырок из дырочной области в электронную, т. е. появится диффузионная компонента тока, как в обычном p-n-переходе. При этом носители проходят над потенциальным барьером, величина которого уменьшена приложенным внешним положительным смещением (за счет своей тепловой энергии), в то время как при туннельном эффекте они проходят сквозь него.
Но расчеты показывают, что ток в точке д вольтамперной характеристики значительно больше диффузионного тока. который должен быть при этом напряжении смещения. Превышение действительного тока над диффузионным, обусловленным инжекцией, получило название избыточного тока. Природа его еще до конца не выяснена, но температурная зависимость этого тока говорит, что он имеет туннельный характер. Предполагаемый механизм туннельного перехода через глубокие уровни в запрещенной зоне показан на рис. 6, д. Электрон из зоны проводимости переходит на примесный уровень и с него туннелирует в валентную зону.
Возможны и другие механизмы переходов, но этот наиболее вероятен.
В случае дальнейшего увеличения положительного смещения от точки д ток через диод опять начнет возрастать по тому же закону, что и в обычном диоде. Зонная схема, соответствующая этому случаю, изображена на рис. 6, е. Стрелки показывают, что носители должны взбираться на барьер, а не проходить сквозь него, как при туннелировании.
При подаче на переход обратного смещения перекрытие зон увеличится (рис. 6, ж). В результате против электронов на уровнях в валентной зоне материала p-типа окажется увеличенное число свободных уровней в зоне проводимости материала n-типа. Это приведет к проявлению результирующего потока электронов уже справа налево, и ток во внешней цепи будет обратным. При увеличении смещения обратный ток возрастает. Таким образом, туннельный механизм обратного тока обеспечивает малое обратное сопротивление туннельного диода в отличие от обычного диода, имеющего большое обратное сопротивление.
Следует отметить, что из-за квантово-механической природы туннельного эффекта возникает много трудностей при построении теории туннельного диода. Но в этом направлении ведутся интенсивные работы, особенно по теории вольтамперной характеристики туннельного диода. Полученные выражения пока довольно громоздки и неудобны для использования в аналитическом расчете цепей с туннельными диодами, так как не дают прямой зависимости между током и напряжением.
Но на основе этих работ становится возможным физический расчет самих туннельных диoдoв
Выражение для вольтамперной характеристики можно получить на основе простых физических рассуждений, что позволит глубже уяснить природу туннельного диода.
Количественное выражение для общего туннельного тока может быть получено путем нахождения отдельных компонент этого тока, одной из которых является туннельный поток электронов из зоны проводимости электронного полупроводника в валентную зону дырочного полупроводника, а второй компонентой — туннельный поток электронов из валентной зоны дырочного полупроводника в зону проводимости электронного полупроводника. Поток электронов, туннелирующих из зоны проводимости в валентную зону, определяется следующими факторами:
1) числом электронов в части зоны проводимости, перекрывающейся с валентной зоной;
2) числом свободных состояний в этом же энергетическом интервале в валентной зоне;
3) вероятностью туннелирования (см. формулу (5а). Если ρc(Е) и ρv(E)— плотности состояний в зоне проводимости и валентной зоне соответственно, fc(Е) и fv(E) — функции распределения Ферми, показывающие вероятность занятия данного состояния электроном. Wc→v , Wv→c — соответственно вероятности туннелирования электронов из зоны проводимости в валентную зону и наоборот, то плотность занятых состояний с энергией Е в зоне проводимости равна произведению плотности состояний на вероятность их заполнения fc(Е)· fv(E), а плотность свободных состояний валентной зоны аналогично равна ρv(E) ·[1− fv(E)].