Туннельный эффект, туннельный диод
Избыточный электрон, оторванный от примесных атомов (достаточно энергии теплового движения), попадает в зону проводимости. При этом неподвижный атом примеси становится положительно заряженным ионом. Такая примесь, способная отдавать электроны, называется донорной, а полупроводник, получивший электроны от этой примеси, − электронным полупроводником, или полупроводником n-типа.
В случае замены атома германия элементом III групп (например, индием) три электрона его внешней оболочки образуют ковалентные связи с тремя из четырех соседних атомов германия (рис. 2, а), а четвертая связь останется одноэлектронной, так как у атома примеси нет еще одного электрона Недостающий электрон для незаполненной связи может был получен при разрыве какой-нибудь соседней ковалентной связи атома германия. При этом атом примеси становится отрицательным ионом, а в месте разрыва ковалентной связи возникает дырка. Такие акты образования дырок идут непрерывно. Эти дырки свободно перемещаются по кристаллу и участвуют в электропроводности. Полупроводник, в котором электропроводность обусловлена дырками, называется дырочным, или полупроводником p-типа (p-positive), а примеси III группы, приводящие к образованию дырок,—акцепторами. Энергетические уровни акцепторных примесей будут расположены внутри запрещенной зоны вблизи границы валентной зоны (рис.2,6).
Положение уровня Ферми в электронном и дырочном полупроводниках можно найти не только путем аналитического решения сложного уравнения, но и графическим способом. Предварительно необходимо заметить, что в электронном полупроводнике, кроме донорных примесей, могут находиться и акцепторные. Но что бы электропроводность была обусловлена в основном носителями одного знака, концентрация донорных примесей должна значительно превосходить концентрацию акцепторных. Такое положение часто возникает при недостаточной очистке (из-за ее трудности или нерентабельности технологии) исходного материала от имеющихся в нем примесей и последующим введением требуемых примесей. Аналогичное замечание может быть сделано и о наличии донорных примесей в дырочном полупроводнике. Так, до сих пор еще не получен чистый (собственный) кремний, потому что он содержит трудно удаляемую примесь бора, являющуюся для кремния акцептором. Для получения кремния с электронной проводимостью в него надо ввести донорные примеси в таком количестве, чтобы они значительно превысили естественную концентрацию акцептора (бора) в исходном материале. В случае равенства концентраций доноров и акцепторов поупроводник называют «скомпенсированным».
n + NA = p + ND .
где EF — энергия уровня Ферми;
Еc— энергия, соответствующая дну зоны проводимости;
k—постоянная Больцмана;
Т—абсолютная температура;
h—постоянная Планка;
mn — эффективная масса электрона.
где mp — эффективная масса дырки;
EV — энергия, соответствующая потолку валентной зоны.
В рассматриваемом случае концентрация (n, p) примесных носителей тока намного преобладает над концентрацией носителей, обусловливающих собственную проводимость.
Концентрации ионизированных доноров ND и акцепторов NA постоянны для данной степени легирования материала полупроводника.
Если в равенство n + NA = p + ND подставить выражения для соответствующих концентраций, то получится уравнение относительно уровня Ферми. Его решение можно найти графически, построив левую и правую части уравнения как функцию Ферми и определив точку пересечения этих двух кривых (соответствующую равенству положительных и отрицательных зарядов). Это построение выполнено на рис. 2, в для электронного и дырочного полупроводников.На энергетической диаграмме зон полупроводника вдоль горизонтальной оси отложены значения концентраций(в логарифмическом масштабе), а не пространственная координата, как обычно. Значения концентраций доноров ND и акцепторов NA изображаются прямыми линиями, не зависящими от энергии. Для построения зависимости концентрации электронов в зоне проводимости n от уровня Ферми необходимо подставить в уравнение
В логарифмическом масштабе это представляет собой прямую линию для n как функции уровня Ферми (см. рис. 2. в). Подобное же построение выполняется и для p как функции уровня Ферми. Суммарная концентрация положительных зарядов p + ND изображена на рис. 2, в сплошной жирной линией, а суммарная концентрация отрицательных зарядов n + NA − пунктирной жирной кривой. Точка пересечения кривых 1 и 2, соответствующая выполнению условия электрической нейтральности, дает положение уровня Ферми в материале при данных концентрациях примесей. Повторение подобных построений для других концентраций примесей позволяет определить зависимость положения уровня Ферми от их величины. Этим методом может быть получена и зависимость положения уровня Ферми от температуры при постоянной концентрации примесей (но уже с учетом носителей, определяющих собственную проводимость, концентрация которых зависит от температуры).