Магия жидких кристаллов
Рефераты >> Физика >> Магия жидких кристаллов

Для кристаллов существует хорошо развитая теория упругости. Еще в школе учат тому, что деформация твер­дого тела прямо пропорциональна приложенной силе и обратно пропорциональна модулю упругости. Возника­ет мысль, если оптические свойства жидких кристаллов подобны свойствам обычных кристаллов, то, может быть, жидкий кристалл, подобно обычному кристаллу, облада­ет и упругими свойствами. Может показаться на первый взгляд, что эта мысль совсем уж тривиальна. Однако не торопитесь с суждениями. Вспомните, что жидкий кри­сталл течет, как обычная жидкость. А жидкость не прояв­ляет свойств упругости, за исключением упругости по от­ношению к всестороннему сжатию, и поэтому для нее модуль упругости по отношению к обычным деформаци­ям строго равен нулю. Казалось бы, налицо парадокс. Но его разрешение в том, что жидкий кристалл - это не обычная, а анизотропная жидкость, т. е. жидкость свойства которой различны в различных направлениях.

Таким образом, построение теории упругости для жидких кристаллов было не таким уж простым делом и нельзя было теорию, развитую для кристаллов, непо­средственно применить к жидким кристаллам. Во-первых, Существенно, что, когда говорят о деформации в жидких кристаллах, то имеют в виду отклонения направления ди­ректора от равновесного направления. Для нематика, на­пример, это означает, что речь идет об изменении от точки к точке в образце под влиянием внешнего воздей­ствия ориентации директора, который в равновесной си­туации, т. е. в отсутствии воздействия, во всем образце ориентирован одинаково. В обычной же теории упругости деформации описывают смещение отдельных точек твердого тела относительно друг друга под влиянием приложенного воздействия. Таким образом, деформа­ции в жидком кристалле — это совсем не те привычные всем деформации, о которых говорят в случае твердого тела. Кроме того, упругие свойства жидкого кристалла в общем случае следует рассматривать, учитывая его тече­ние, что также вносит новый элемент и тем самым услож­няет рассмотрение по сравнению с обычной теорией уп­ругости. Поэтому здесь ограничимся рассказом об упру­гости жидких кристаллов в отсутствие течений.

Оказывается, любую деформацию в жидком кристал­ле можно представить как одну из трех допустимых в ЖК видов изгибных деформаций либо как комбинацию этих трех видов деформации. Такими главными деформа­циями являются поперечный изгиб, кручение и продоль­ный изгиб, названные виды де­формаций делают понятным происхождение их названий.

В поперечном изгибе меняется от точки к точке вдоль оси образца, а направление, перпендикулярное (по­перечное) директору, в продольном изгибе — ориента­ция директора, а в кручении происходит поворот дирек­тора вокруг оси изображенного.

Коэффициенты пропорциональности между упругой энергией жидкого кристалла и деформациями изгибов называют упругими модулями. Таких упругих модулей в жидких кристаллах по числу деформаций три —K1, К2 и К3. Численные значения этих модулей несколько отлича­ются друг от друга. Так, модуль продольного изгиба К3 обычно оказывается больше двух других модулей. Наименьшую упругость жидкий кристалл проявляет по отношению к кручению, т. е. модуль К2, как правило, меньше остальных.

Такой результат качественно можно понять, вспоми­ная обсуждавшуюся выше модель нематика как жидко­сти ориентированных палочек. Действительно, чтобы осуществить продольный изгиб, надо прикладывать уси­лия, которые стремятся изогнуть эти палочки (а они жест­кие). В деформации же кручения, например, происходит просто поворот палочек-молекул относительно друг дру­га, при этом не возникает усилий, связанных с деформа­цией отдельной палочки-молекулы.

Поэтому и оказывается, что упругость по отношению к продольному изгибу (модуль К3), больше упругости по отношению к кручению (модуль К2). Модуль же К1 име­ет промежуточную между К2 и К3 величину.

Чтобы сравнить упругость жидкого кристалла с упру­гостью обычного кристалла, надо сравнить их упругие энергии, приходящиеся на единицу объема. При этом можно для качественной оценки пренебречь различием модулей поперечного, продольного изгиба и кручения и, вычисляя упругую энергию жидкого кристалла, исполь­зовать их среднее значение. Сравнение показывает, что упругая энергия твердого тела в типичной ситуации ока­зывается по меньшей мере на десять порядков больше упругой энергии жидкого кристалла.

Таким образом, теория упругости жидких кристаллов, описывающая их как сплошную среду, т. е. претендую­щая только на описание свойств ЖК, усредненных по расстояниям больше межмолекулярных, приводит к вы­воду, что минимальная энергия жидкого кристалла соот­ветствует отсутствию деформаций в нем. Для нематика таким состоянием с минимальной энергией или, как гово­рят, основным состоянием является конфигурация с одинаковой ориентацией директора во всем объеме об­разца. Любое отклонение распределения направлений директора от однородного (т. е. постоянного во всем объеме) связано с наличием в нематике упругой дополнительной энергии, т. е. может быть реализовано только за счет приложения внешних воздействий, например, свя­занных с поверхностями образца, внешними электриче­скими и магнитными полями и т. д. В отсутствие этих воз­действий или при снятии их нематик стремится возвра­титься в состояние с однородной ориентацией дирек­тора.

Континуальная теория применима для описания и других типов жидких кристаллов. Для них, однако, тре­буются определенные модификации теории. Но об этом речь пойдет дальше.

Гидродинамика ЖК

Только что мы познакомились с упругими свойствами жидкого кристалла, сближающими его с твердыми телами. При этом обнаружились сущест­венные отличия его упругих свойств от свойств кристал­ла как в качественном, так и количественном отношении. Теперь познакомимся детально со свойством жидкого кристалла, типичным для жидкости, — текучестью, изуче­нием которой занимается наука гидродинамика.

Сразу следует сказать, что, несмотря на солидный воз­раст гидродинамики, одной из древнейших научных ди­сциплин, и большие достижения, в этой науке сущест­вуют проблемы, не решенные до сих пор. К их числу относится проблема турбулентного, т. е. сопровождаю­щегося нерегулярными вихрями, как в бурном потоке, течения жидкости. Эта проблема, находящаяся, кстати сказать, сейчас в центре внимания специалистов, не ре­шена еще для самых обычных жидкостей, таких, как во­да. А о полном описании турбулентного течения таких сложных сред, как жидкие кристаллы, пока что не идет и речи. Поэтому, говоря здесь о текучести жидких кристал­лов, мы будем иметь в виду их спокойное течение, в котором нет нерегулярных вихрей, или, как принято назы­вать его, «ламинарное течение».

Ламинарное течение обычных жидкостей хорошо изу­чено. Основной характеристикой, определяющей тече­ние в этих условиях, является вязкость, свойство жидкостей, всем хорошо известное на практике. Так, каждый, не задумываясь, скажет, что у воды вязкость небольшая, у смазочных масел гораздо больше, а у смолы—очень большая.

Вязкость характеризуется количественно коэффици­ентом вязкости Т, который показывает, как сильно тре­ние между соседними слоями текущей жидкости и на­сколько интенсивно передается движение жидкости от одной ее точки к другой. Именно из-за вяз­кости при течении жидкости по трубе ее скорость непо­средственно на стенках трубы равна нулю, а в сечении трубы не постоянна, а возрастает по мере удаления от стенок, достигая максимума в центре.


Страница: