Магия жидких кристаллов
Рефераты >> Физика >> Магия жидких кристаллов

Предсказанный теоретически флексоэлектрический эффект вскоре был обнаружен экспериментально. При­чем на эксперименте можно было пользоваться как пря­мым, так и обратным эффектом. Это означает, что можно не только путем деформации ЖК индуцировать в нем электрическое поле и макроскопический диполь­ный момент (прямой эффект), но и, прикладывая к об­разцу внешнее электрическое поле, вызывать дефор­мацию ориентации директора в жидком кристалле.

Электронная игра, электронный словарь и телевизор на жк

Известно, какой популярностью у молодежи пользу­ются различные электронные игры, обычно устанавлива­емые в специальной комнате аттракционов в местах об­щественного отдыха или фойе кинотеатров. Успехи в разработке матричных жидкокристаллических дисплеев сделали возможным создание и массовое производство подобных игр в миниатюрном, так сказать, карманном ис­полнении. Есть игра «Ну, погоди!», ос­военная отечественной промышленностью. Габариты этой игры, как у записной книжки, а основным ее эле­ментом является жидкокристаллический матричный дис­плей, на котором высвечиваются изображения волка, зай­ца, кур и катящихся по желобам яичек. Задача играюще­го, нажимая кнопки управления, заставить волка, пере­мещаясь от желоба к желобу, ловить скатывающиеся с желобов яички в корзину, чтобы не дать им упасть на землю и разбиться. Здесь же отметим, что, помимо раз­влекательного назначения, эта игрушка выполняет роль часов и будильника, т. е. в другом режиме работы на дисплее «высвечивается» время и может подаваться зву­ковой сигнал в требуемый момент времени.

Еще один впечатляющий пример эффективности со­юза матричных дисплеев на жидких кристаллах и микро­электронной техники дают современные электронные словари, которые начали выпускать в Японии. Они пред­ставляют собой миниатюрные вычислительные машинки размером с обычный карманный микрокалькулятор, в память которых введены слова на двух (или больше) языках и которые снабжены матричным дисплеем и кла­виатурой с алфавитом. Набирая на клавиатуре слово на одном языке, вы моментально получаете на дисплее его перевод на другой язык. Представьте себе, как улучшит­ся и облегчится процесс обучения иностранным язы­кам в школе и в вузе, если каждый учащийся будет снаб­жен подобным словарем. А, наблюдая, как быстро изде­лия микроэлектроники внедряются в нашу жизнь, можно с уверенностью сказать, что такое время не за горами. Легко представить и пути дальнейшего совершенствова­ния таких словарей-переводчиков: переводится не одно слово, а целое предложение. Кроме того, перевод мо­жет быть и озвучен. Словом, внедрение таких словарей-переводчиков сулит революцию в изучении языков и технике перевода.

Требования к матричному дисплею, используемому в качестве экрана телевизора, оказываются значительно выше как по быстродействию, так и по числу элементов, чем в описанных выше электронной игрушке и словаре-переводчике. Это станет понятным, если вспомнить, что в соответствии с телевизионным стандартом изображе­ние на экране формируется из 625 строк (и приблизи­тельно из такого же числа элементов состоит каждая строка), а время записи одного кадра 40 мс. Поэтому практическая реализация телевизора с жидкокристалли­ческим экраном оказывается более трудной задачей. Тем не менее, налицо первые успехи в техническом решении и этой задачи. Так, японская фирма «Sony» наладила про­изводство миниатюрного, умещающегося практически на ладони телевизора с черно-белым изображением и размером экрана 3,6 см.

Союз микроэлектроники и жидких кристаллов оказы­вается чрезвычайно эффективным не только в готовом изделии, но и на стадии изготовления интегральных схем. Как известно, одним из этапов производства микросхем является фотолитография, которая состоит в нанесении на поверхность полупроводникового материала специ­альных масок, а затем в вытравливании с помощью фотографической техники так называемых литографических окон. Эти окна в результате дальнейшего процесса про­изводства преобразуются в элементы и соединения ми­кроэлектронной схемы. От того, насколько малы разме­ры соответствующих окон, зависит число элементов схемы, которые могут быть размещены на единице площади полупроводника, а от точности и качества вытравливания окон зависит качество микросхемы. Выше уже говорилось о контроле качества готовых микросхем с помощью холестерических жидких кристаллов, которые визуализируют поле температур на работающей схеме и позволяют выделить участки схемы с аномальным тепловыделением. Не менее полезным оказалось применение жидких кристаллов (теперь уж нематических) на стадии контроля качества литографических работ. Для этого на полупроводниковую пластину с протравленными литогра­фическими окнами наносится ориентированный слой нематика, а затем к ней прикладывается электрическое напряжение. В результате в поляризованном свете картина вытравленных окон отчетливо визуализируется. Более того, этот метод позволяет выявить очень малые по размерам неточности и дефекты литографических работ, протяженность которых всего 0,01 мкм.

О БУДУЩИХ ПРИМЕНЕНИЯХ ЖИДКИХ КРИСТАЛЛОВ

Многие оптиче­ские эффекты в жидких кристаллах, о которых рассказы­валось выше, уже освоены техникой и используются в изделиях массового производства. Например, всем из­вестны часы с индикатором на жидких кристаллах, но не все еще знают, что те же жидкие кристаллы использу­ются для производства наручных часов, в которые встро­ен калькулятор. Тут уже даже трудно сказать, как на­звать такое устройство, то ли часы, то ли компьютер. Но это уже освоенные промышленностью изделия, хотя всего десятилетия назад подобное казалось нереальным. Перспективы же будущих массовых и эффективных при­менений жидких кристаллов еще более удивительны. По­этому стоит рассказать о нескольких технических идеях применения жидких кристаллов, которые пока что не реализованы, но, возможно, в ближайшие несколько лет послужат основой создания устройств, которые станут для нас такими же привычными, какими, скажем, сейчас являются транзисторные приемники.

Рассмотрим пример достижения научных исследований в процессе создания жидкокристаллических экранов, отображения информации, в частности жидкокристаллических экранов телевизоров. Известно, что массовое создание больших плоских экранов на жидких кристаллах сталкивается с трудностями не принципиального, а чисто технологиче­ского характера. Хотя принципиально возможность со­здания таких экранов продемонстрирована, однако связи со сложностью их производства при современной технологии их стоимость оказывается очень высокой. По­этому возникла идея создания проекционных устройств на жидких кристаллах, в которых изображение, получен­ное на жидкокристаллическом экране малого размера, могло бы быть спроектировано в увеличенном виде на обычный экран, подобно тому, как это происходит в кинотеатре с кадрами кинопленки. Оказалось, что такие устройства могут быть реализованы на жидких кристал­лах, если использовать сэндвичевые структуры, в кото­рые наряду со слоем жидкого кристалла входит слой фотополупроводника. Причем запись изображения в жидком кристалле, осуществляемая с помощью фотопо­лупроводника, производится лучом света. Теперь же познакомимся с физическими явлениями, положенными в основу его работы.


Страница: