Магия жидких кристаллов
Большинство современных LCD – дисплеев производятся с использованием TFT – активной матрицы, в которой молекулы ЖК управляются электродами матричной энергосистемы, нанесёнными на заднюю стеклянную пластину. В точках пересечений линий сетки (горизонтальных и вертикальных рядов) установлены тонкоплёночные полевые транзисторы, усиливающие приходящие импульсные сигналы, а по числу соответствующие всему множеству субпикселей матрицы. Общий прозрачный электрод нанесён на другую (переднюю) стеклянную пластину. Функционирование матричной энергетической сети в каждой ячейке поддерживается зарядовым конденсатором.
Благодаря внедрению TFT – технологий удалось увеличить размеры плоскостей LCD – матриц, повысить чёткость, яркость, расширить динамический диапазон воспроизводимых изображений и одновременно уменьшить постоянную времени, иначе говоря, повысить скорость срабатывания пикселей в ответ на подачу и выключение воздействующего кодово-импульсного напряжения.
LCD – экраны получают распространение не только благодаря их малой толщине, отличной геометрии и ровной поверхности, но ещё и потому, что обеспечивают высокое разрешение, качественную, немерцающую «картинку» как по центру, так и в углах; они не нуждаются в сведении лучей и фокусировке, присущих электронно – лучевым трубкам. Кроме того, они экономчны в части потребления мощности электросети, не перегреваются при длительной работе, и потому в них не устанавливают вентиляторы; мониторы можно крепить вплотную к стене и даже в углублении. Срок службы электрооптических дисплеев достигает 50 – 60 тысяч часов.
К недостаткам их относят чрезмерную пиксельную технологичность демонстрируемых изображений – иначе говоря, точечную структуру, которую легко разглядеть с помощью увеличительного стекла. Длительное чтение таких страниц с близкого расстояния утомляет глаза. Для офисной работы предпочтительнее выбирать менее «рябящие» мониторы с объёмом матрицы 1 млн. пикселей и более. Однако избыточная техногенность LCD – панелей практически незаметна при просмотре не текста, а постоянных и движущихся «картинок» изобразительного жанра.
Оптический микрофон
Только что было рассказано об управлении световыми потоками с помощью света. Однако в системах оптической обработки информации и связи возникает необходимость преобразовывать не только световые сигналы в световые, но и другие самые разнообразные воздействия в световые сигналы. Такими воздействиями могут быть давление, звук, температура, деформация и т. д. И вот для преобразования этих воздействий в оптический сигнал жидкокристаллические устройства оказываются опять-таки очень удобными и перспективными элементами оптических систем.
Конечно, существует масса методов преобразовывать перечисленные воздействия в оптические сигналы, однако подавляющее большинство этих методов связано сначала с преобразованием воздействия в электрический сигнал, с помощью которого затем можно управлять световым потоком. Таким образом, методы эти двуступенчатые и, следовательно, не такие уж простые и экономичные в реализации. Преимущество применения в этих целях жидких кристаллов состоит в том, что с их помощью самые разнообразные воздействия можно непосредственно переводить в оптический сигнал, что устраняет промежуточное звено в цепи воздействия - световой сигнал, а значит, вносит принципиальное упрощение в управление световым потоком. Другое достоинство ЖК-элементов в том, что они легко совместимы с узлами волоконно-оптических устройств.
Чтобы проиллюстрировать возможности с помощью ЖК управлять световыми сигналами, расскажем о принципе работы «оптического микрофона» на ЖК—устройства, предложенного для непосредственного перевода акустического сигнала в оптический.
Принципиальная схема устройства оптического микрофона очень проста. Его активный элемент представляет собой ориентированный слой нематика. Звуковые колебания создают периодические во времени деформации слоя, вызывающие также переориентации молекул и модуляцию поляризации (интенсивности) проходящего поляризованного светового потока.
Исследования характеристик оптического микрофона на ЖК, выполненные в Акустическом институте АН СССР, показали, что по своим параметрам он не уступает существующим образцам и может быть использован в оптических линиях связи, позволяя осуществлять непосредственное преобразование звуковых сигналов в оптические. Оказалось также, что почти во всем температурном интервале существования нематической фазы его акустооптические характеристики практически не изменяются
Прежде чем перейти к другому примеру возможного применения ЖК в оптических линиях связи, напомним, что оптическое волокно представляет собой оптический волновод. Свет из этого волновода не выходит наружу по той причине, что снаружи на волокно нанесено покрытие, диэлектрическая проницаемость которого больше, чем во внутренней части волокна, в результате чего происходит полное внутреннее отражение света на границе внутренней части и внешнего покрытия. Волноводный режим распространения света в волокне может быть также достигнут не только за счет резкой диэлектрической границы, но и при плавном изменении показателя преломления (диэлектрической проницаемости) от середины к поверхности волновода.
По аналогии с оптическими волокнами в тонком слое жидкого кристалла также может быть реализован волноводный режим распространения света вдоль слоя, если обеспечить соответствующее изменение диэлектрической проницаемости в пределах толщины слоя. А как мы знаем, изменения диэлектрических характеристик в ЖК можно добиться изменением ориентации директора (длинных осей молекул). Оказывается, в слое нематика или холестерина можно, например, путем приложения электрического поля обеспечить такой характер изменения ориентации директора по толщине, что для определенной поляризации света такой слой оказывается оптическим волноводом.
Каждый увидит здесь очевидную аналогию между оптическим волокном-волноводом и жидкокристаллическим волноводом. Но имеется здесь и очень существенная разница. Эта разница состоит в том, что если диэлектрические характеристики оптического волокна, а следовательно, и его волноводные свойства, неизменны и формируются при его изготовлении, то диэлектрические, а следовательно, и волноводные свойства ЖК-волновода легко изменять путем внешних воздействий.
Это значит, например, что если жидкокристаллический волновод включен в канал волоконной связи, то световой поток, идущий по этому каналу, можно модулировать, меняя характеристики ЖК-элемента. В простейшем случае это может быть просто прерывание светового потока, которое может происходить в ЖК-эле-менте при таком переключении электрического сигнала на нем, которое приводит к исчезновению его волновод-ных свойств. Кстати сказать, этот же ЖК-элемент может выполнять и функции оптического микрофона, если он устроен так, что акустический сигнал вызывает в нем возмущение ориентации директора.
Как сделать стереотелевизор